Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emerging supersolidity in photonic-crystal polariton condensates

Abstract

A supersolid is a counter-intuitive phase of matter in which its constituent particles are arranged into a crystalline structure, yet they are free to flow without friction. This requires the particles to share a global macroscopic phase while being able to reduce their total energy by spontaneous, spatial self-organization. The existence of the supersolid phase of matter was speculated more than 50 years ago1,2,3,4. However, only recently has there been convincing experimental evidence, mainly using ultracold atomic Bose–Einstein condensates (BECs) coupled to electromagnetic fields. There, various guises of the supersolid were created using atoms coupled to high-finesse cavities5,6, with large magnetic dipole moments7,8,9,10,11,12,13, and spin–orbit-coupled, two-component systems showing stripe phases14,15,16. Here we provide experimental evidence of a new implementation of the supersolid phase in a driven-dissipative, non-equilibrium context based on exciton–polaritons condensed in a topologically non-trivial, bound state in the continuum (BiC) with exceptionally low losses, realized in a photonic-crystal waveguide. We measure the density modulation of the polaritonic state indicating the breaking of translational symmetry with a precision of several parts in a thousand. Direct access to the phase of the wavefunction allows us to also measure the local coherence of the supersolid. We demonstrate the potential of our synthetic photonic material to host phonon dynamics and a multimode excitation spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: System in reciprocal and coordinate space.
Fig. 2: Parametric scattering.
Fig. 3: Spatial coherence through threshold.
Fig. 4: Non-rigid scattering.

Similar content being viewed by others

Data availability

The data of this study are available at https://doi.org/10.5281/zenodo.14251103 (ref. 54). Raw data can be obtained from the corresponding author on reasonable request.

References

  1. Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161–162 (1957).

    Article  ADS  MATH  CAS  Google Scholar 

  2. Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Zhur. Eksper. Teoret. Fiziki 29, 1107–1113 (1969).

    MATH  Google Scholar 

  3. Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  ADS  MATH  CAS  Google Scholar 

  4. Kirzhnits, D. A. & Nepomnyashchii, Y. A. Coherent crystallization of quantum liquid. Zhur. Eksper. Teoret. Fiziki 32, 1191–1197 (1971).

    MATH  Google Scholar 

  5. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article  ADS  PubMed  Google Scholar 

  6. Guo, Y. et al. An optical lattice with sound. Nature 599, 211–215 (2021).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  7. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  8. Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162–1165 (2021).

    Article  ADS  MathSciNet  PubMed  MATH  CAS  Google Scholar 

  9. Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  10. Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    MATH  CAS  Google Scholar 

  11. Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    MATH  Google Scholar 

  12. Klaus, L. et al. Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys. 18, 1453–1458 (2022).

    Article  PubMed  PubMed Central  MATH  CAS  Google Scholar 

  13. Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386–389 (2019).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  14. Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  15. Putra, A., Salces-Cárcoba, F., Yue, Y., Sugawa, S. & Spielman, I. B. Spatial coherence of spin-orbit-coupled Bose gases. Phys. Rev. Lett. 124, 053605 (2020).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  16. Li, Y., Pitaevskii, L. P. & Stringari, S. Quantum tricriticality and phase transitions in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012).

    Article  ADS  PubMed  MATH  Google Scholar 

  17. Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    Article  PubMed  PubMed Central  MATH  CAS  Google Scholar 

  18. Khamehchi, M. A., Zhang, Y., Hamner, C., Busch, T. & Engels, P. Measurement of collective excitations in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. A 90, 063624 (2014).

    Article  ADS  Google Scholar 

  19. Ji, S.-C. et al. Softening of roton and phonon modes in a Bose-Einstein condensate with spin-orbit coupling. Phys. Rev. Lett. 114, 105301 (2015).

    Article  ADS  PubMed  MATH  Google Scholar 

  20. Wouters, M. & Carusotto, I. Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime. Phys. Rev. A 76, 043807 (2007).

    Article  ADS  MATH  Google Scholar 

  21. Saccani, S., Moroni, S. & Boninsegni, M. Excitation spectrum of a supersolid. Phys. Rev. Lett. 108, 175301 (2012).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  22. Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    Article  ADS  PubMed  Google Scholar 

  23. Ardizzone, V. et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature 605, 447–452 (2022).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  24. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  25. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  MATH  Google Scholar 

  26. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  MATH  CAS  Google Scholar 

  27. Sanvitto, D. et al. All-optical control of the quantum flow of a polariton condensate. Nat. Photon. 5, 610–614 (2011).

    Article  ADS  MATH  CAS  Google Scholar 

  28. Vaupel, M., Maître, A. & Fabre, C. Observation of pattern formation in optical parametric oscillators. Phys. Rev. Lett. 83, 5278–5281 (1999).

    Article  ADS  MATH  CAS  Google Scholar 

  29. Ardizzone, V. et al. Formation and control of Turing patterns in a coherent quantum fluid. Sci. Rep. 3, 3016 (2013).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  30. Whittaker, C. E. et al. Polariton pattern formation and photon statistics of the associated emission. Phys. Rev. X 7, 031033 (2017).

    MATH  Google Scholar 

  31. Romanelli, M., Leyder, C., Karr, J. P., Giacobino, E. & Bramati, A. Four wave mixing oscillation in a semiconductor microcavity: generation of two correlated polariton populations. Phys. Rev. Lett. 98, 106401 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Lewandowski, P. et al. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities. Phys. Rev. B 94, 045308 (2016).

    Article  ADS  MATH  Google Scholar 

  33. Wu, J. et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett. 21, 3120–3126 (2021).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  34. Sawicki, K. et al. Polariton lasing and energy-degenerate parametric scattering in non-resonantly driven coupled planar microcavities. Nanophotonics 10, 2421–2429 (2021).

    Article  MATH  CAS  Google Scholar 

  35. Lecomte, T. et al. Optical parametric oscillation in one-dimensional microcavities. Phys. Rev. B 87, 155302 (2013).

    Article  ADS  MATH  Google Scholar 

  36. Chen, F. et al. Femtosecond dynamics of a polariton bosonic cascade at room temperature. Nano Lett. 22, 2023–2029 (2022).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  37. Ye, Z. et al. Ultrafast intermode parametric scattering dynamics in room-temperature polariton condensates. Phys. Rev. B 107, L060303 (2023).

    Article  ADS  CAS  Google Scholar 

  38. Xie, W. et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett. 108, 166401 (2012).

    Article  ADS  PubMed  Google Scholar 

  39. Gianfrate, A. et al. Reconfigurable quantum fluid molecules of bound states in the continuum. Nat. Phys. 20, 61–67 (2024).

    Article  CAS  Google Scholar 

  40. Riminucci, F. et al. Polariton condensation in gap-confined states of photonic crystal waveguides. Phys. Rev. Lett. 131, 246901 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  41. Nigro, D. & Gerace, D. Theory of exciton-polariton condensation in gap-confined eigenmodes. Phys. Rev. B 108, 085305 (2023).

    Article  ADS  MATH  CAS  Google Scholar 

  42. Carusotto, I. & Ciuti, C. Spontaneous microcavity-polariton coherence across the parametric threshold: quantum Monte Carlo studies. Phys. Rev. B 72, 125335 (2005).

    Article  ADS  MATH  Google Scholar 

  43. Nigro, D. et al. Supersolidity of polariton condensates in photonic crystal waveguides. Phys. Rev. Lett. 134, 056002 (2025).

  44. Grudinina, A. et al. Collective excitations of a bound-in-the-continuum condensate. Nat. Commun. 14, 3464 (2023).

    Article  ADS  PubMed  PubMed Central  MATH  CAS  Google Scholar 

  45. Geier, K. T., Martone, G. I., Hauke, P., Ketterle, W. & Stringari, S. Dynamics of stripe patterns in supersolid spin-orbit-coupled Bose gases. Phys. Rev. Lett. 130, 156001 (2023).

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  46. Pomeau, Y. & Rica, S. Dynamics of a model of supersolid. Phys. Rev. Lett. 72, 2426–2429 (1994).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  47. Casotti, E. et al. Observation of vortices in a dipolar supersolid. Nature 635, 327–331 (2024).

    Article  PubMed  MATH  CAS  Google Scholar 

  48. Böning, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 075130 (2011).

    Article  ADS  MATH  Google Scholar 

  49. Matuszewski, M., Taylor, T. & Kavokin, A. V. Exciton supersolidity in hybrid Bose-Fermi systems. Phys. Rev. Lett. 108, 060401 (2012).

    Article  ADS  PubMed  Google Scholar 

  50. Riminucci, F. et al. Nanostructured GaAs/(Al, Ga)As waveguide for low-density polariton condensation from a bound state in the continuum. Phys. Rev. Appl. 18, 024039 (2022).

    Article  ADS  CAS  Google Scholar 

  51. Langbein, W. Spontaneous parametric scattering of microcavity polaritons in momentum space. Phys. Rev. B 70, 205301 (2004).

    Article  ADS  MATH  Google Scholar 

  52. Ciuti, C., Schwendimann, P. & Quattropani, A. Parametric luminescence of microcavity polaritons. Phys. Rev. B 63, 041303 (2001).

    Article  ADS  Google Scholar 

  53. Dunnett, K., Ferrier, A., Zamora, A., Dagvadorj, G. & Szymańska, M. H. Properties of the signal mode in the polariton optical parametric oscillator regime. Phys. Rev. B 98, 165307 (2018).

    Article  ADS  CAS  Google Scholar 

  54. Trypogeorgos, D. & Gianfrate, A. Emerging supersolidity in photonic crystal polariton condensates. Zenodo https://doi.org/10.5281/zenodo.14251103 (2024).

Download references

Acknowledgements

We acknowledge fruitful discussions with V. Ardizzone, M. Pieczarka and A. Recati. We are thankful to G. Lerario for his valuable feedback on the manuscript. This project was financed by PNRR MUR project: ‘National Quantum Science and Technology Institute’ – NQSTI (PE0000023); PNRR MUR project: ‘Integrated Infrastructure Initiative in Photonic and Quantum Sciences’ – I-PHOQS (IR0000016); Quantum Optical Networks based on Exciton-polaritons – (Q-ONE) funding from the HORIZON-EIC-2022-PATHFINDER CHALLENGES EU programme under grant agreement no. 101115575; Neuromorphic Polariton Accelerator – (PolArt) funding from the Horizon-EIC-2023-Pathfinder Open EU programme under grant agreement no. 101130304; the project ‘Hardware implementation of a polariton neural network for neuromorphic computing’ – Joint Bilateral Agreement CNR-RFBR (Russian Foundation for Basic Research) – Triennal Program 2021–2023; the MAECI project ‘Novel photonic platform for neuromorphic computing’, Joint Bilateral Project Italia – Polonia 2022–2023; the PRIN project ‘QNoRM: A quantum neuromorphic recognition machine of quantum states’ – (grant 20229J8Z4P). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. M.L. acknowledges support through the FWF-funded QuantERA project QuSiED with project number I 6008-N. I.C. acknowledges support from the Provincia Autonoma di Trento, partly through the Q@TN initiative. This research is financed in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative, grant GBMF9615 to L.N.P., and by the National Science Foundation MRSEC grant DMR 2011750 to Princeton University. Work at the Molecular Foundry is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. We thank S. Dhuey for assistance with electron-beam lithography and P. Cazzato for the technical support.

Author information

Authors and Affiliations

Authors

Contributions

D.T. and M.L. conceived the experiment and convinced D.S. to proceed with it. A.G. took the data and, together with D.T., performed the analysis. D.T., A.G. and M.L. wrote the manuscript. D.N., D.G., G.I.M. and I.C. provided theoretical support. F.R. processed the sample; growth was performed by K.W.B. and L.N.P. D.S. supervised the work, discussed the data and tirelessly explained to D.T. how polariton optical parametric oscillations should behave. D.T. tried to use the best photonics language he could muster but, in the end, had to use KETs. D.B. and M.D.G. assisted with the experimental set-up and interpretation of the data. All authors contributed to discussions and editing of the manuscript.

Corresponding author

Correspondence to Dimitrios Trypogeorgos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michael Fraser, Tingge Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Holographic imaging.

a, Fourier transform of the interferogram in c showing the main peak around 7.5 μm−1 and sidebands at ±kr from it. b, In energy-resolved measurements, the BiC is dark in the middle. c, An interferogram as given by the Michelson interferometer described in Methods. The bright spot in the middle is coming directly from the exciton reservoir and its size is comparable with the laser spot. d, Retaining only the middle frequencies leads to a density without the middle spot (bottom panel) as it is incoherent, as opposed to retaining the low frequencies (top panel). e, In both cases, the amplitude of the modulation and the density in the lobes of the BiC are exactly the same.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trypogeorgos, D., Gianfrate, A., Landini, M. et al. Emerging supersolidity in photonic-crystal polariton condensates. Nature 639, 337–341 (2025). https://doi.org/10.1038/s41586-025-08616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08616-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing