Abstract
Clearance rates on different sizes of spherically shaped algae were determined in uni-algal experiments for all developmental stages (NII through adult) of the copepodAcartia tonsa, and used to construct food size spectra. Growth and developmental rates were determined at 7 food levels (0 to 1 500 μg C l-1 ofRhodomonas baltica). The lower size limit for particle capture was between 2 and 4 μm for all developmental stages. Optimum particle size and upper size limit increased during development from ∼7 μm and 10 to 14 μm for NII to NIII to 14 to 70 μm and ∼250 μm for adults, respectively. When food size spectra were normalized (percent of maximum clearance in a particular stage versus particle diameter/prosome length) they resembled log-normal distributions with near constant width (variance). Optimum, relative particle sizes corresponded to 2 to 5% of prosome length independent of developmental stage. Since the biomass of particulate matter is approximately constant in equal logarithmic size classes in the sea, food availability may be similar for all developmental stages in the average marine environment. Juvenile specific growth rate was exponential and increased hyperbolically with food concentration. It equaled specific female egg-production rate at all food concentrations. The efficiency by which ingested carbon in excess of maintenance requirements was converted into body carbon was 0.44, very similar to the corresponding efficiency of egg-production in females. On the assumptions that food availability is similar for all developmental stages, and that juvenile and female specific growth/egg-production rates are equal, female egg-production rates are representative of turnover rates (production/biomass) of the entireA. tonsa population and probably in other copepod species as well. Therefore, in situ estimates of female fecundity may be used for a rapid time- and site-specific field estimate of copepod production. This approach is shown to be fairly robust to even large deviations from the assumptions.
Literature cited
Ayukai, T. (1987). Discriminate feeding of the calanoid copepodAcartia clausi in mixtures of phytoplankton and inert particles. Mar. Biol. 94: 579–587
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F. (1983). The ecological role of water-column microbes in the seas. Mar. Ecol. Prog. Ser. 10: 257–263
Bartram, W. C. (1981). Experimental development of a model for the feeding of neritic copepods on phytoplankton. J. Plankt. Res. 3: 25–51
Boyd, C. M. (1985). Is secondary production in the Gulf of Maine limited by the availability of food? Arch. Hydrobiol. Beih. 21: 57–65
Burkill, P. H., Kendall, T. F. (1982). Production of the copepodEurytemora affinis in the Bristol Channel. Mar. Ecol. Prog Ser. 7: 21–31
Checkley, D. M. Jr. (1980a). The egg production of a marine planktonic copepod in relations to its food supply: laboratory studies. Limnol. Ocenaogr. 25: 420–446
Checkley, D. M. Jr. (1980b). Food limitation of egg production by a marine, planktonic copepod in the sea off southern California. Limnol. Oceanogr. 25: 991–998
Checkley, D. M. Jr. (1985). Nitrogen limitation of zooplankton production and its effect on the marine nitrogen cycle. Arch. Hydrobiol. Beih. 21: 103–113
Corkett, C. J., McLaren, I. A. (1978). The biology ofPseudocalanus. Adv. mar. Biol. 15
Dagg, M. (1978). Estimated,in situ, rates of egg production for the copepodCentropages typicus (Krøyer) in the New York Bight. J. exp. mar. Biol. Ecol. 34: 183–196
Donaghay, P. L., Small, L. F. (1979). Food selection capabilities of the estuarine copepodAcartia clausii. Mar. Biol. 52: 137–146
Durbin, A. G., Durbin, E. G. (1981) Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay, Rhode Island. Estuaries 4: 24–41
Durbin, E. G., Durbin, A. G., Smayda, T. J., Verity, P. G. (1983). Food limitation of production by adultAcartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr. 28: 1199–1213
Fenchel, T. (1982). Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8: 211–223
Fernandez, F. (1979). Nutrition studies in the nauplius larvae ofCalanus pacificus (Copepoda: Calanoidea). Mar. Biol. 53: 131–147
Fransz, H. G., Diel, S. (1985). Secondary production ofCalanus finmarchicus (Copepoda: Calanoidea) in a transitional system of the Fladen Ground area (northern North Sea) during the spring of 1983. In: Proc. 14th Europ. mar. biol. Symp. p. 123–133. [Gibbs, P. E. (ed.) Cambridge University Press, Cambridge]
Frost, B. W. (1972). Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepodCalanus pacificus Limnol. Oceanogr. 17: 805–815
Frost, B. W. (1977). Feeding behaviour ofCalanus pacificus in mixtures of food particles. Limnol. Oceanogr. 22: 472–491
Frost, B. W. (1985). Food limitation of the planktonic marine copepodsCalanus Pacificus andPseudocalanus sp. in a temperate fjord. Arch. Hydrobiol. Beih. 21: 1–13
Frost, B. W., Landry, M. R., Hasset, R. P. (1983). Feeding behaviour of large calanoid copepodsNeocalanus cristatus andN. plumchrus from subarctic Pacific Ocean. Deep-sea Res. 30A: 1–13
Harris, J. R. W. (1983). The development and growth ofCalanus copepodites. Limnol. Oceanogr. 28: 142–147
Harris, R. P., Paffenhöfer, G.-A. (1976). Feeding, growth and reproduction of the marine planktonic copepodTemora longicornis Müller. J. mar. biol. Ass. U.K. 56: 675–690
Huntley, M. (1982). Yellow water in La Jolla Bay, California, July, 1980. II. Suppression of zooplankton grazing. J. exp. mar. Biol. Ecol. 63: 81–91
Huntley, M., Sykes, P., Rohan, S., Marin, V. (1986). Chemicallymediated rejection of dinoflagellate prey by the copepodsCalanus pacificus andParacalanus parvus: mechanisms, occurrence and significance. Mar. Ecol. Prog. Ser. 28: 105–120
Jensen, J. (1987). Fødeindtagelse, ægproduktion og fedtsyresammensætning hos den marine planktoniske copepodAcartia tonsa. Unpublished Masters thesis, Odense University, Odense
Kimmerer, W. J. (1983). Direct measurement of the production: biomass ratio of the subtropical calanoid copepodAcrocalanus inermis. J. Plankt. Res. 5: 1–14
Kimmerer, W. J. (1987). The theory of secondary production calculations for continuously reproducing populations. Limnol. Oceanogr. 32: 1–13
Kimmerer, W. J., McKinnon, A. D. (1987). Growth, mortality, and secondary production of the copepodAcartia tranteri in Westernport Bay, Australia. Limnol. Oceanogr. 32: 14–28
Kiørboe, T., Johansen, K. (1986). Studies of a larval herring (Clupea harengus L.) patch in the Buchan area. IV. Zooplankton distribution and productivity in relation to hydrographic features. Dana 6: 37–51
Kiørboe, T., Munk, P., Richardson, K. (1987). Respiration and growth of larval herringClupea harengus: relation between specific dynamic action and growth efficiency. Mar. Ecol. Prog. Ser. 40: 1–10
Kiørboe, T., Møhlenberg, F., Hamburger, K. (1985). Bioenergetics of the planktonic copepodAcartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser. 26: 85–97
Klein Breteler, W. C. M., Fransz, H. G., Gonzales, S. R. (1982). Growth and development of four calanoid copepod species under experimental and natural conditions. Neth. J. Sea Res. 16: 195–207
Lampert, W. (ed.) (1985). Food limitation and the structure of zooplankton communities. Proceedings of an international symposium held at Plön, W. Germany, July 9–13, 1984. Arch. Hydrobiol. Suppl 21, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart
Landry, M. R. (1978). Population dynamics and production of a planktonic marine copepod,Acartia clausi, in a small temperate lagoon on San Juan Island, Washington. Int. Rev. Ges. Hydrobiol. 63: 77–119
Legendre, L. (1981). Hydrodynamic control of marine phytoplankton production: The paradox of stability. In: Nihoul, J. C. (ed.) Ecohydrodynamics, Elsevier, Amsterdam, p. 191–207
McLaren, I. A. (1986). Is “structural” growth ofCalanus potentially exponential. Limnol. Oceanogr. 31: 1342–1346
McLaren, I. A., Corkett, C. J. (1981). Temperature-dependent growth and production by a marine copepod. Can. J. Fish. aquat. Sci. 38: 77–83
Miller, C. B., Huntley, M. E., Brooks, E. R. (1984). Post-collection molting rates of planktonic, marine copepods: Measurement, application, problems. Limnol. Oceanogr. 29: 1274–1289
Miller, C. B., Johnson, J. K., Heinle, D. R. (1977). Growth rules in the marine copepod genusAcartia. Limnol. Ocenaogr. 22: 326–335
Mullin, M. (1980). Interactions between marine zooplankton and suspended particles. In: Kavanaugh, M. C., Leckie, J. (eds.) Particulates in water. Adv. Chem. Ser. no 189, American Chemical Society, Washington D. C., p. 233–247
Mullin, M. M., Brooks, E. R. (1970). Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food. In: Steele, J. H. (ed.) Marine Food chains. University of California Press, Berkeley, p. 74–95
Paffenhöfer, G.-A. (1976). Feeding, growth, and food conversion of the marine planktonic copepodCalanus helgolandicus. Limnol. Oceanogr. 21: 39–50
Paffenhöfer, G.-A. (1984a). Food ingestion by the marine planktonic copepodParacalanus in relation to abundance and size distribution of food. Mar. Biol. 80: 323–333
Paffenhöfer, G.-A. (1984b). DoesParacalanus feed with a leaky sieve? Limnol. Oceanogr. 29: 155–160
Paffenhöfer, G.-A., Harris, R. P. (1976). Feeding, growth and reproduction of the marine planktonic copepodPseudocalanus elongatus Boeck. J. mar. biol. Ass. U.K. 50: 327–344
Paffenhöfer, G.-A., Van Sant, K. B. (1985). The feeding response of a marine planktonic copepod to quantitiy and quality of particles. Mar. Ecol. Prog. Ser. 27: 55–65
Peterson, W. T. (1986). Development, growth and survivorship of the copepodCalanus marshallae in the laboratory. Mar. Ecol. Prog. Ser. 29: 61–72
Poulet, S. A. (1973). Grazing ofPseudocalanus minutus on naturally occurring particulate matter. Limnol. Oceanogr. 18: 564–573
Poulet, S. A. (1974). Seasonal grazing ofPseudocalanus minutus on particles. Mar. Biol. 25: 109–123
Price, H. J., Paffenhöfer, G.-A. (1984). Effects of food experience in the copepodEucalanus pileatus: a cinematographic study. Mar. Biol. 84: 35–40
Richman, S., Heinle, D. R., Huff, R. (1977). Grazing by adult estuarine calanoid copepods of the Chesapeake Bay. Mar. Biol. 42: 69–84
Rigler, F. H., Downing, J. A. (1984). The calculation of secondary productivity. In: Downing, J. A., Rigler, F. H. (eds.) Manual on methods for the assessment of secondary production in fresh waters, 2nd edn, Blackwell Scientific Publications, Oxford, p. 19–58
Runge, J. A. (1984). Egg production of the marine, planktonic copepodCalanus pacificus Brodsley: Laboratory observations. J. exp. mar. Biol. Ecol. 74: 53–66
Runge, J. A. (1985). Egg production rates ofCalanus finmarchicus in the sea off Nova Scotia. Arch. Hydrobiol. Beih. 21: 33–40
Sekiguchi, H., McLaren, I. A., Corkett, C. J. (1980). Relationship between growth rate and egg production in the copepodAcartia clausi hudsonica. Mar. Biol. 58: 133–138
Sheldon, R. W., Prakash, A., Sutcliffe, W. H., Jr. (1972). The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340
Smetacek, V., Pollehne, F. (1986). Nutrient cycling in pelagic systems: a reappraisal of the conceptual framework. Ophelia 26: 401–428
Støttrup, J. G., Richardson, K., Kirkegaard, E., Pihl, N. J. (1986). The cultivation ofAcartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture 52: 87–96
Tranter, D. J. (1976). Herbivore production. In: Cushing, D. H., Walsh, J. J. (eds.) The ecology of the seas. Blackwell Scientific Publications, Oxford, p. 186–224
Uye, S.-I. (1981). Fecundity studies of neritic calanoid copepodsAcartia clausi Giesbrecht andA. steueri smirnov: a simple empirical model of daily egg production. J. exp. mar. Biol. Ecol. 50: 255–271
Uye, S.-I., Iwai, Y., Kasahara, S. (1983). Growth and production of the inshore marine copepodPseododiaptomus marinus in the central part of the Inland Sea of Japan. Mar. Biol. 73: 91–98
Uye, S.-I., Kasahara, S. (1983). Grazing of various developmental stages ofPseudodiaptomus marinus (Copepoda: Calanoida) on naturally occurring particles. Bull. Plankt. Soc. Japan 30: 147–158
Vanderploeg, H. A., Scaria, D., Liebig, J. R. (1984). Feeding rate ofDiaptomus silicis and its relation to selectivity and effective food concentration in algal mixtures and in Lake Michigan. J. Plankt. Res. 6: 919–941
Vidal, J. (1980). Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate ofCalanus pacificus andPseudocalanus sp. Mar. Biol. 56: 111–134
Author information
Authors and Affiliations
Additional information
Communicated by T. Fenchel, Helsingør
Rights and permissions
About this article
Cite this article
Berggreen, U., Hansen, B. & Kiørboe, T. Food size spectra, ingestion and growth of the copepodAcartia tonsa during development: Implications for determination of copepod production. Mar. Biol. 99, 341–352 (1988). https://doi.org/10.1007/BF02112126
Accepted:
Issue date:
DOI: https://doi.org/10.1007/BF02112126