From "Experimentation in Mathematics" Borwein, Bailey and Girgensohn 2004 : $$\sum_{n=1}^{\infty} \lfloor n\cdot e^{\frac{\pi}3\sqrt{163}}\rfloor 2^{-n}=1280640\ \ \text{(correct to at least half a billion digits!)}$$ Using the $\mathrm{sinc}$ function ($\mathrm{sinc}(x)=\frac{\sin(x)}x$ and this paper) : $$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right) dx=\frac{\pi}2$$$$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\,\mathrm dx=\frac{\pi}2$$ $$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)dx=\frac{\pi}2$$$$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)\,\mathrm dx=\frac{\pi}2$$ $$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)\cdot \mathrm{sinc}\left(\frac x5\right)dx=\frac{\pi}2$$$$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)\cdot \mathrm{sinc}\left(\frac x5\right)\,\mathrm dx=\frac{\pi}2$$ $$\cdots$$ $$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)\cdot \mathrm{sinc}\left(\frac x5\right)\cdots \mathrm{sinc}\left(\frac x{13}\right)dx=\frac{\pi}2$$$$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)\cdot \mathrm{sinc}\left(\frac x5\right)\cdots \mathrm{sinc}\left(\frac x{13}\right)\,\mathrm dx=\frac{\pi}2$$ $$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)\cdots \mathrm{sinc}\left(\frac x{15}\right)dx=\frac{467807924713440738696537864469}{ 935615849440640907310521750000}\pi$$$$\int_0^{\infty} \mathrm{sinc}\left(\frac x1\right)\cdot \mathrm{sinc}\left(\frac x3\right)\cdots \mathrm{sinc}\left(\frac x{15}\right)\,\mathrm dx=\frac{467807924713440738696537864469}{ 935615849440640907310521750000}\pi$$
In fact the story doesn't end here! It was found (see Baillie and Borweins' "Surprising Sinc Sums and Integrals") that you could replace the integrals by the corresponding $\frac 12 + \sum_1^{\infty}$ series : $$\frac 12 + \sum_{m=1}^{\infty} \prod_{k=0}^N \mathrm{sinc}\left(\frac m{2k+1}\right)=\int_0^{\infty} \prod_{k=0}^{N} \mathrm{sinc}\left(\frac x{2k+1}\right)\ dx.$$$$\frac 12 + \sum_{m=1}^{\infty} \prod_{k=0}^N \mathrm{sinc}\left(\frac m{2k+1}\right)=\int_0^{\infty} \prod_{k=0}^{N} \mathrm{sinc}\left(\frac x{2k+1}\right)\,\mathrm dx.$$
for the previous values of ($N=0,1,2,3\cdots 7$) but also for larger values of $N$ up to $40248$. For $N\gt 40248$ the left part is always larger than the integral at the right!
At this point the reciprocals of the odd integers could be replaced by other values (see the paper for the conditions required for the equality to hold) for example by the reciprocals of the prime numbers. Now, because of the slow divergence in this case, the equality breaks down only for $N \approx 10^{176}$ (when the sum of values slowly crosses the $2\pi$ barrier) and with an error smaller than $\displaystyle 10^{-10^{86}}$.