The continued fraction method works like this: Suppose $x = a^2 + b$, where $a = \lfloor \sqrt x \rfloor$. Then
$$ \begin{align} x &= \sqrt{a^2 + b}\\ x-a &= \sqrt{a^2 + b} - a\\ \frac{1}{x-a} &= \frac{1}{\sqrt{a^2 + b} - a}\\ &= \frac{1}{\sqrt{a^2 + b} - a}\frac{\sqrt{a^2 + b} + a}{\sqrt{a^2 + b} + a}\\ &= \frac{\sqrt{a^2 + b} + a}{b}\\ &= \frac{x + 2a}{b} \end{align} $$$$ \begin{align} x &= \sqrt{a^2 + b}\\ x-a &= \sqrt{a^2 + b} - a\\ \frac{1}{x-a} &= \frac{1}{\sqrt{a^2 + b} - a}\\ &= \frac{1}{\sqrt{a^2 + b} - a}\frac{\sqrt{a^2 + b} + a}{\sqrt{a^2 + b} + a}\\ &= \frac{\sqrt{a^2 + b} + a}{b}\\ &= \frac{x + a}{b} \end{align} $$
Substitute, and get:
$$ \begin{align} x &= a + (x-a)\\ &= a + \frac{b}{2a+x}\\ %= a + \frac{b}{2a+\frac{b}{2a+x}}\\ x &= a+\cfrac{b}{2a+\cfrac{b}{2a+\cfrac{b}{2a + \dots}}} \end{align} $$$$ \begin{align} x &= a + (x-a)\\ &= a + \frac{b}{a+x}\\ %= a + \frac{b}{2a+\frac{b}{a+x}}\\ x &= a+\cfrac{b}{2a+\cfrac{b}{2a+\cfrac{b}{2a + \dots}}} \end{align} $$
Now, this is not a simple continued fraction. However, if one divides the numerator and denominator of $\frac{b}{2a+x}$ by $b$, then one can eventually get a periodic simple continued fraction, and one approximates by the convergents. The above expression turns out to be faster.