Binary search for it.
Since $1 < 2 < 4$, we must have $\sqrt{1} < \sqrt{2} < \sqrt{4}$, so $\sqrt{2} \in (1,2)$. Now repeatedly: find the midpoint, $m$, of the current interval, $(a,b)$, square $m$ and compare with $2$, and if $2 = m^2$ declare that $m = \sqrt{2}$, or if $2 < m^2$, make the new interval $(a,m)$, otherwise make the new interval $(m,b)$. This process halves the size of the interval on each step. Since $\log_2(10^{-20}) = -66.438\dots$, after 67 doublings, the error in taking any value from the interval is $<10^{-20}$ (but, if the interval straddles a digit change, you may have to perform additional steps to find out on which side of the change is $\sqrt{2}$).
This process is shown in the table below. Each decimal number is computed to $21$ digits and has trailing zeroes stripped. If there are still $21$ digits, a space is inserted between the $20^\text{th}$ and $21^\text{st}$.
\begin{align} \text{step} && \text{interval} && m && m^2 \\ 1 && (1., 2.) && 1.5 && 2<2.25 \\ 2 && (1., 1.5) && 1.25 && 1.5625<2 \\ 3 && (1.25, 1.5) && 1.375 && 1.890625<2 \\ 4 && (1.375, 1.5) && 1.4375 && 2<2.06640625 \\ 5 && (1.375, 1.4375) && 1.40625 && 1.9775390625<2 \\ 6 && (1.40625, 1.4375) && 1.421875 && 2<2.021728515625 \\ 7 && (1.40625, 1.421875) && 1.4140625 && 1.99957275390625<2 \\ 8 && (1.4140625, 1.421875) && 1.41796875 && 2<2.0106353759765625 \\ 9 && (1.4140625, 1.41796875) && 1.416015625 && 2<2.005100250244140625 \ \\ 10 && (1.4140625, 1.416015625) && 1.4150390625 && \ 2<2.00233554840087890625 \\ 11 && (1.4140625, 1.4150390625) && 1.41455078125 && \ 2<2.00095391273498535156\ 3 \\ 12 && (1.4140625, 1.41455078125) && 1.414306640625 && \ 2<2.00026327371597290039 \\ 13 && (1.4140625, 1.414306640625) && 1.4141845703125 && \ 1.99991799890995025634\ 8<2 \\ 14 && (1.4141845703125, 1.414306640625) && 1.41424560546875 && \ 2<2.00009063258767127990\ 7 \\ 15 && (1.4141845703125, 1.41424560546875) && 1.414215087890625 && \ 2<2.00000431481748819351\ 2 \\ 16 && (1.4141845703125, 1.414215087890625) && 1.4141998291015625 && \ 1.99996115663088858127\ 6<2 \\ 17 && (1.4141998291015625, 1.414215087890625) && 1.41420745849609375 && \ 1.99998273566598072648<2 \\ 18 && (1.41420745849609375, 1.414215087890625) && \ 1.414211273193359375 && 1.99999352522718254476\ 8<2 \\ 19 && (1.414211273193359375, 1.414215087890625) && \ 1.4142131805419921875 && 1.99999892001869739033\ 3<2 \\ 20 && (1.4142131805419921875, 1.414215087890625) && \ 1.41421413421630859375 && 2<2.00000161741718329722 \end{align}\begin{align} 21 && (1.4142131805419921875, 1.41421413421630859375) && \ 1.41421365737915039062\ 5 && 2<2.00000026871771297010\ 1 \\ 22 && (1.4142131805419921875, 1.41421365737915039062\ 5) && \ 1.41421341896057128906\ 2 && 1.99999959436814833679\ 8<2 \\ 23 && (1.41421341896057128906\ 2, 1.41421365737915039062\ 5) && \ 1.41421353816986083984\ 4 && 1.99999993154291644259\ 5<2 \\ 24 && (1.41421353816986083984\ 4, 1.41421365737915039062\ 5) && \ 1.41421359777450561523\ 4 && 2<2.00000010013031115363\ 4 \\ 25 && (1.41421353816986083984\ 4, 1.41421359777450561523\ 4) && \ 1.41421356797218322753\ 9 && 2<2.00000001583661290993\ 6 \\ 26 && (1.41421353816986083984\ 4, 1.41421356797218322753\ 9) && \ 1.41421355307102203369\ 1 && 1.99999997368976445422\ 1<2 \\ 27 && (1.41421355307102203369\ 1, 1.41421356797218322753\ 9) && \ 1.41421356052160263061\ 5 && 1.99999999476318862656\ 8<2 \\ 28 && (1.41421356052160263061\ 5, 1.41421356797218322753\ 9) && \ 1.41421356424689292907\ 7 && 2<2.00000000529990075437\ 4 \\ 29 && (1.41421356052160263061\ 5, 1.41421356424689292907\ 7) && \ 1.41421356238424777984\ 6 && 2<2.00000000003154468700\ 1 \\ 30 && (1.41421356052160263061\ 5, 1.41421356238424777984\ 6) && \ 1.41421356145292520523 && 1.99999999739736665591\ 7<2 \\ 31 && (1.41421356145292520523, 1.41421356238424777984\ 6) && \ 1.41421356191858649253\ 8 && 1.99999999871445567124\ 2<2 \\ 32 && (1.41421356191858649253\ 8, 1.41421356238424777984\ 6) && \ 1.41421356215141713619\ 2 && 1.99999999937300017906\ 8<2 \\ 33 && (1.41421356215141713619\ 2, 1.41421356238424777984\ 6) && \ 1.41421356226783245801\ 9 && 1.99999999970227243302\ 1<2 \\ 34 && (1.41421356226783245801\ 9, 1.41421356238424777984\ 6) && \ 1.41421356232604011893\ 3 && 1.99999999986690856000\ 8<2 \\ 35 && (1.41421356232604011893\ 3, 1.41421356238424777984\ 6) && \ 1.41421356235514394938\ 9 && 1.99999999994922662350\ 4<2 \end{align}\begin{align} 36 && (1.41421356235514394938\ 9, 1.41421356238424777984\ 6) && \ 1.41421356236969586461\ 8 && 1.99999999999038565525\ 2<2 \\ 37 && (1.41421356236969586461\ 8, 1.41421356238424777984\ 6) && \ 1.41421356237697182223\ 2 && 2<2.00000000001096517112\ 7 \\ 38 && (1.41421356236969586461\ 8, 1.41421356237697182223\ 2) && \ 1.41421356237333384342\ 5 && 2<2.00000000000067541319\ 0 \\ 39 && (1.41421356236969586461\ 8, 1.41421356237333384342\ 5) && \ 1.41421356237151485402\ 1 && 1.99999999999553053422\ 1<2 \\ 40 && (1.41421356237151485402\ 1, 1.41421356237333384342\ 5) && \ 1.41421356237242434872\ 3 && 1.99999999999810297370\ 5<2 \\ 41 && (1.41421356237242434872\ 3, 1.41421356237333384342\ 5) && \ 1.41421356237287909607\ 4 && 1.99999999999938919344\ 7<2 \\ 42 && (1.41421356237287909607\ 4, 1.41421356237333384342\ 5) && \ 1.41421356237310646974\ 9 && 2<2.00000000000003230331\ 9 \\ 43 && (1.41421356237287909607\ 4, 1.41421356237310646974\ 9) && \ 1.41421356237299278291\ 2 && 1.99999999999971074838\ 3<2 \\ 44 && (1.41421356237299278291\ 2, 1.41421356237310646974\ 9) && \ 1.41421356237304962633 && 1.99999999999987152585<2 \\ 45 && (1.41421356237304962633, 1.41421356237310646974\ 9) && \ 1.41421356237307804804 && 1.99999999999995191458\ 5<2 \\ 46 && (1.41421356237307804804, 1.41421356237310646974\ 9) && \ 1.41421356237309225889\ 5 && 1.99999999999999210895\ 2<2 \\ 47 && (1.41421356237309225889\ 5, 1.41421356237310646974\ 9) && \ 1.41421356237309936432\ 2 && 2<2.00000000000001220613\ 5 \\ 48 && (1.41421356237309225889\ 5, 1.41421356237309936432\ 2) && \ 1.41421356237309581160\ 8 && 2<2.00000000000000215754\ 3 \\ 49 && (1.41421356237309225889\ 5, 1.41421356237309581160\ 8) && \ 1.41421356237309403525\ 2 && 1.99999999999999713324\ 7<2 \\ 50 && (1.41421356237309403525\ 2, 1.41421356237309581160\ 8) && \ 1.41421356237309492343 && 1.99999999999999964539\ 5<2 \\ 51 && (1.41421356237309492343, 1.41421356237309581160\ 8) && \ 1.41421356237309536751\ 9 && 2<2.00000000000000090146\ 9 \\ 52 && (1.41421356237309492343, 1.41421356237309536751\ 9) && \ 1.41421356237309514547\ 5 && 2<2.00000000000000027343\ 2 \\ 53 && (1.41421356237309492343, 1.41421356237309514547\ 5) && \ 1.41421356237309503445\ 2 && 1.99999999999999995941\ 4<2 \\ 54 && (1.41421356237309503445\ 2, 1.41421356237309514547\ 5) && \ 1.41421356237309508996\ 3 && 2<2.00000000000000011642\ 3 \\ 55 && (1.41421356237309503445\ 2, 1.41421356237309508996\ 3) && \ 1.41421356237309506220\ 8 && 2<2.00000000000000003791\ 8 \\ 56 && (1.41421356237309503445\ 2, 1.41421356237309506220\ 8) && \ 1.41421356237309504833 && 1.99999999999999999866\ 6<2 \\ 57 && (1.41421356237309504833, 1.41421356237309506220\ 8) && \ 1.41421356237309505526\ 9 && 2<2.00000000000000001829\ 2 \\ 58 && (1.41421356237309504833, 1.41421356237309505526\ 9) && \ 1.41421356237309505180\ 0 && 2<2.00000000000000000847\ 9 \\ 59 && (1.41421356237309504833, 1.41421356237309505180\ 0) && \ 1.41421356237309505006\ 5 && 2<2.00000000000000000357\ 3 \\ 60 && (1.41421356237309504833, 1.41421356237309505006\ 5) && \ 1.41421356237309504919\ 7 && 2<2.00000000000000000111\ 9 \\ 61 && (1.41421356237309504833, 1.41421356237309504919\ 7) && \ 1.41421356237309504876\ 4 && 1.99999999999999999989\ 3<2 \\ 62 && (1.41421356237309504876\ 4, 1.41421356237309504919\ 7) && \ 1.41421356237309504898 && 2<2.00000000000000000050\ 6 \\ 63 && (1.41421356237309504876\ 4, 1.41421356237309504898) && \ 1.41421356237309504887\ 2 && 2<2.00000000000000000019\ 9 \\ 64 && (1.41421356237309504876\ 4, 1.41421356237309504887\ 2) && \ 1.41421356237309504881\ 8 && 2<2.00000000000000000004\ 6 \\ 65 && (1.41421356237309504876\ 4, 1.41421356237309504881\ 8) && \ 1.41421356237309504879 && 1.99999999999999999996\ 9<2 \\ 66 && (1.41421356237309504879, 1.41421356237309504881\ 8) && \ 1.41421356237309504880\ 4 && 2<2.00000000000000000000\ 8 \\ 67 && (1.41421356237309504879, 1.41421356237309504880\ 4) && \ 1.41421356237309504879\ 8 && 1.99999999999999999998\ 9<2 \\ 68 && (1.41421356237309504879\ 8, 1.41421356237309504880\ 4) && \ 1.41421356237309504880\ 1 && 1.99999999999999999999\ 8<2 \\ 69 && (1.41421356237309504880\ 1, 1.41421356237309504880\ 4) && \ 1.41421356237309504880\ 3 && 2<2.00000000000000000000\ 3 \end{align}