-2
$\begingroup$

Why does $\,\lim\limits_{b\to \infty}\left(\sqrt{c}-b\right)=\frac{a}{2}\;$ when $\;c=b^2+ab\;?$

I've been studying the properties of rectangles for a little while on my own so I don't know what are the actual terms or what are the formulas, but I've noticed that if you take $A$ as a "degree of rectangleness" (so if a rectangle is $\;b\!\cdot\!m=c\;$ and $|m\!-\!b|\!=\!A\,$) , then the bigger $b$ is, the closer $\sqrt{c}\!-\!b$ is to $\frac{A}{2}$.

Can someone explain why it works and if there's a function or formula that can explain this phenomenon?

New contributor
Owlfox is a new contributor to this site. Take care in asking for clarification, commenting, and answering. Check out our Code of Conduct.
$\endgroup$
4
  • $\begingroup$ MathJax requires dollar signs around LaTeX expressions $\endgroup$ Commented 5 hours ago
  • $\begingroup$ If $d=b^2 + ab + \frac{a^2}{4}$ then $\sqrt{d}-b=\frac a2$ - note the lack of limits $\endgroup$ Commented 5 hours ago
  • 2
    $\begingroup$ Welcome to Math SE. Note that $\sqrt{b^2+ab}-b=\frac{(\sqrt{b^2+ab}-b)(\sqrt{b^2+ab}+b)}{\sqrt{b^2+ab}+b}$. $\endgroup$ Commented 5 hours ago
  • $\begingroup$ Owlfox, it means that the bigger $b$ is, the closer GM of $b$ and $m$ is to AM of them. $\endgroup$ Commented 4 hours ago

2 Answers 2

3
$\begingroup$

In agreement with all the comments that appear so quickly,

$$ \begin{align} \tag1\lim_{b\to+\infty}\left(\sqrt{b^2+ab}-b\right)&=\lim_{b\to+\infty}\frac{\left(\sqrt{b^2+ab}-b\right)\left(\sqrt{b^2+ab}+b\right)}{\sqrt{b^2+ab}+b}\\ \tag2&=\lim_{b\to+\infty}\frac{b^2+ab-b^2}{\sqrt{b^2+ab}+b}\\ \tag3&=\lim_{b\to+\infty}\frac{a}{\sqrt{1+\frac ab}+1}\\ \tag4&=\frac a2 \end {align} $$ where there is no step that is controversial.


There was briefly a deleted answer that had a mistake in it. Upon second thought, there must be a way to fix it, and so here goes: Let $y=\sqrt{b^2+ab}-b$

$$ \begin{align} \tag5y+b&=\sqrt{b^2+ab}\\ \tag6y^2+2yb+b^2&=b^2+ab\\ \tag7y^2+2yb&=ab\\ \tag8\frac{y^2}b+2y&=a \end {align} $$ This is an equality that always holds, and so if we can show that $\lim_{b\to+\infty}\frac{y^2}b=0$ then the result $y\to\frac a2$ will become self-evident.

Thus, we soldier on, $$ \begin{align} \tag9y^2&=b^2+ab+b^2-2b\sqrt{b^2+ab}\\ \tag{10}\frac{y^2}b&=2b+a-2\sqrt{b^2+ab}\\ \tag{11}&=\frac{(2b+a)^2-4(b^2+ab)}{2b+a+2\sqrt{b^2+ab}}\\ \tag{12}&=\frac{a^2}{2b+a+2\sqrt{b^2+ab}}\\ \tag{13}\therefore\qquad\lim_{b\to+\infty}\frac{y^2}b&=0 \end {align} $$ But of course, this is just a longer route to the same result.

$\endgroup$
1
$\begingroup$

Using binomial series,

$\lim\limits_{b\to\infty} \left(b\left(1+\dfrac ab\right)^{1/2}-b\right)=\lim\limits_{b\to\infty}\left(b\left(1+\dfrac12\dfrac ab-\dfrac18\dfrac{a^2}{b^2}+\cdots\right)-b\right)$

$=\lim\limits_{b\to\infty}\left(\dfrac12a-\dfrac18\dfrac{a^2}b+\cdots\right)=\dfrac a2.$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.