Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Numerically integrate a function using the Padua points
ResourceFunction["PaduaIntegrate"][f,{x,xmin,xmax},{y,ymin,ymax}] gives a numerical approximation to the multiple integral |
| InterpolationOrder | 15 | order of the interpolating polynomial generated |
| "PaduaType" | 1 | type of Padua points to use |
| WorkingPrecision | MachinePrecision | the precision used in internal computations |
Numerically integrate the function Exp[-x2-y2]:
| In[1]:= | |
| Out[1]= | |
Compare with the exact answer:
| In[2]:= | |
| Out[2]= | |
A test function due to Franke:
| In[3]:= | |
Integrate the function over a rectangular domain:
| In[4]:= | |
| Out[4]= | |
Compare with the result of NIntegrate:
| In[5]:= | |
| Out[5]= | |
Use a degree 25 interpolant for integrating the Dixon–Szegö function:
| In[6]:= | |
| Out[6]= | |
Use type-3 Padua points in integrating the Dixon–Szegö function:
| In[7]:= | |
| Out[7]= | |
Use 25-digit precision for the numerical integration:
| In[8]:= | |
| Out[8]= | |
If the input function is a polynomial of degree k, PaduaIntegrate gives the exact answer provided k is less than or equal to the setting for InterpolationOrder:
| In[9]:= | |
| Out[9]= | |
| In[10]:= | |
| Out[10]= | |
A test function due to Franke:
| In[11]:= | |
Integrate the function by integrating the interpolant obtained from the resource function PaduaInterpolation:
| In[12]:= | |
| Out[13]= | |
The result of directly using PaduaIntegrate is more accurate:
| In[14]:= | |
| Out[14]= | |
This work is licensed under a Creative Commons Attribution 4.0 International License