Measurement in biology is methodized by theory
2019, Biology & Philosophy
https://doi.org/10.1007/S10539-019-9687-XAbstract
We characterize access to empirical objects in biology from a theoretical perspective. Unlike objects in current physical theories, biological objects are the result of a history and their variations continue to generate a history. This property is the starting point of our concept of measurement. We argue that biological measurement is relative to a natural history which is shared by the different objects subjected to the measurement and is more or less constrained by biologists. We call symmetrization the theoretical and often concrete operation which leads to considering biological objects as equivalent in a measurement. Last, we use our notion of measurement to analyze research strategies. Some strategies aim to bring biology closer to the epistemology of physical theories, by studying objects as similar as possible, while others build on biological diversity.
Key takeaways
AI
AI
- Biological measurement is relative to shared natural histories, differing from physical measurement's theoretical invariants.
- Symmetrization is crucial for treating biological objects as equivalent in measurement, accommodating their historical context.
- Research strategies range from genericization of specimens to preserving biological diversity, impacting reproducibility.
- Historical context and genealogical control are vital for understanding biological variability during experiments.
- Biological objects display radical materiality, requiring empirical knowledge tied to specific historical instances.
References (66)
- Abolins, S. R., Pocok, M., Hafalla, J., Riley, E., & Viney, M. (2010). Measures of immune function of wild mice, Mus musculus. Molecular Ecology, 20, 881-892. doi:10.1111/j.1365-294X.2010.04910.x.
- Bailly, F., & Longo, G. (2011). Mathematics and the natural sciences; The Physical Singularity of Life. London: Imperial College Press.
- Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452-454. doi:10.1038/533452a.
- Baxendale, M. (2018). Mapping the continuum of research strategies. Synthese, . doi:10.1007/s11229-018-1683-1.
- Beatty, J. (1995). The evolutionary contingency thesis. In Conceptual Issues in Evolutionary Biology. (p. 217). Cambridge, MA: MIT Press.
- Begley, C., & Ioannidis, J. (2014). Reproducibility in science. Circula- tion Research, 116 , 116-126. doi:10.1161/CIRCRESAHA.114.303819.
- Begley, C. G., & Ellis, L. M. (2012). Drug development: Raise standards for preclinical cancer research. Nature, 483, 531-533. doi:10.1038/483531a.
- Bolland, M. J., Avenell, A., Gamble, G. D., & Grey, A. (2016). System- atic review and statistical analysis of the integrity of 33 randomized controlled trials. Neurology, . doi:10.1212/WNL.0000000000003387.
- Braun, E. (2015). The unforeseen challenge: from genotype-to- phenotype in cell populations. Reports on Progress in Physics, 78, 036602. doi:10.1088/0034-4885/78/3/036602.
- Cai, L., Friedman, N., & Xie, X. (2006). Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358 - 362. doi:10.1038/nature04599.
- Chang, H. (2004). Inventing temperature: Measurement and scientific progress. Oxford University Press.
- Chia, R., Achilli, F., Festing, M., & Fisher, E. (2005). The origins and uses of mouse outbred stocks. Nature genetics, 37 , 1181. doi:10. 1038/ng1665.
- CZN International (1999). International code of zoological nomenclature. London: International Trust for Zoological Nomenclature.
- Danchin, E., Pocheville, A., Rey, O., Pujol, B., & Blanchet., S. (In press). Epigenetics as the hub guiding nongenetic inheritance to genetic assimilation. Biological Reviews, .
- Dudley, J., Golovkina, T., & Ross, S. (2016). Lessons learned from mouse mammary tumor virus in animal models. ILAR Journal, 57 , 12-23. doi:10.1093/ilar/ilv044.
- Festing, M. (2014). Evidence should trump intuition by preferring in- bred strains to outbred stocks in preclinical research. ILAR Journal, 55, 399-404. doi:10.1093/ilar/ilu036.
- Feynman, R., & Gleick, J. (1967). The character of physical law. MIT press.
- Gilbert, S. F. (2014). A holobiont birth narrative: The epigenetic transmission of the human microbiome. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00282.
- Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology: inte- grating epigenetics, medicine, and evolution. Sinauer Associates Sun- derland.
- Gillies, D. (2012). Philosophical theories of probability. Routledge.
- Gould, S. (2002). The structure of evolutionary theory. Harvard University Press.
- Grandcolas, P. (2017). Loosing the connection between the ob- servation and the specimen: a by-product of the digital era or a trend inherited from general biology? Bionomina, 12, 57-62. doi:10.11646/bionomina.12.1.7.
- Gross, V., & Luft, F. (2003). Exercising restraint in measuring blood pressure in conscious mice. Hypertension, 41, 879-881. doi:10.1161/ 01.HYP.0000060866.69947.D1.
- Heindel, J., Newbold, R., Bucher, J., Camacho, L., Delclos, K. B., Lewis, S. M., Vanlandingham, M., Churchwell, M. I., Twaddle, N. C., McLellen, M., Chidambaram, M., Bryant, M., Woodling, K., da Costa, G. G., Ferguson, S. A., Flaws, J., Howard, P. C., Walker, N. J., Zoeller, R. T., Fostel, J., Favaro, C., & Schug, T. T. (2015). NIEHS/FDA CLARITY-BPA research program update. Reproductive Toxicology, 58, 33 -44. doi:10.1016/j.reprotox.2015. 07.075.
- Houle, D., Pélabon, C., Wagner, G. P., & Hansen, T. F. (2011). Mea- surement and meaning in biology. The Quarterly Review of Biology, 86 , 3-34. doi:10.1086/658408.
- Huneman, P. (2018). Diversifying the picture of explanations in bi- ological sciences: ways of combining topology with mechanisms. Synthese, 195, 115-146. doi:10.1007/s11229-015-0808-z.
- Isaacs, J. T. (1986). Genetic control of resistance to chemically in- duced mammary adenocarcinogenesis in the rat. Cancer Research, 46 , 3958-3963.
- Jablonka, E., Lamb, M. J., & Zeligowski, A. (2014). Evolution in Four Dimensions, revised edition: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. London: MIT press.
- Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheri- tance: prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly review of biology, 84, 131-176. doi:10.1086/598822.
- Jensen, V. S., Porsgaard, T., Lykkesfeldt, J., & Hvid, H. (2016). Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research. American journal of translational research, 8, 3574.
- Johnson, P. D., & Besselsen, D. G. (2002). Practical aspects of ex- perimental design in animal research. ILAR journal, 43, 202-206. doi:10.1093/ilar.43.4.202.
- Kohler, R. E. (1994). Lords of the fly: Drosophila genetics and the experi- mental life. University of Chicago Press.
- Lancet (2018). Uk life science research: time to burst the biomedical bubble. The Lancet, 392, 187. doi:10.1016/S0140-6736(18)31609-X.
- Lecointre, G., & Le Guyader, H. (2006). The tree of life: a phylogenetic classification volume 20. Harvard University Press.
- Leonelli, S. (2014). What difference does quantity make? on the epistemology of big data in biology. Big Data & Society, 1, 2053951714534395. doi:10.1177/2053951714534395.
- Lindner, A., Madden, R., Demarez, A., Stewart, E., & Taddei, F. (2008). Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proceedings of the National Academy of Sciences, 105, 3076 -3081. doi:10.1073/pnas.0708931105.
- Longo, G., & Montévil, M. (2011a). From physics to biology by extending criticality and symmetry breakings. Progress in Biophysics and Molecular Biology, 106 , 340 -347. doi:10.1016/j.pbiomolbio. 2011.03.005.
- Longo, G., & Montévil, M. (2011b). Protention and retention in biological systems. Theory in Biosciences, 130, 107-117. doi:10.1007/ s12064-010-0116-6.
- Longo, G., & Montévil, M. (2014). Perspectives on Organisms: Biological time, symmetries and singularities. Lecture Notes in Morphogenesis. Dordrecht: Springer. doi:10.1007/978-3-642-35938-5.
- Longo, G., & Montévil, M. (2017). Comparing symmetries in models and simulations. In M. Dorato, L. Magnani, & T. Bertolotti (Eds.), Springer Handbook of Model-Based Science. Springer. doi:10.1007/ 978-3-319-30526-4.
- McNeill, J., Barrie, F., Buck, W., Demoulin, V., Greuter, W., Hawksworth, D., Herendeen, P., Knapp, S., Marhold, K., Prado, J. et al. (2012). International Code of Nomenclature for algae, fungi and plants. Konigstein, Germany: Koeltz Scientific Books.
- Mogil, J. S., Wilson, S. G., Bon, K., Lee, S. E., Chung, K., Raber, P., Pieper, J. O., Hain, H. S., Belknap, J. K., Hubert, L., Elmer, G. I., Chung, J. M., & Devor, M. (1999). Heritability of nociception i: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain, 80, 67 -82. doi:10.1016/S0304-3959(98)00197-3.
- Montévil, M. (2018). Possibility spaces and the notion of novelty: from music to biology. Synthese, . doi:10.1007/s11229-017-1668-5.
- Montévil, M., & Mossio, M. (2015). Biological organisation as closure of constraints. Journal of Theoretical Biology, 372, 179 -191. doi:10. 1016/j.jtbi.2015.02.029.
- Montévil, M., Mossio, M., Pocheville, A., & Longo, G. (2016). Theoret- ical principles for biology: Variation. Progress in Biophysics and Molec- ular Biology, 122, 36 -50. doi:10.1016/j.pbiomolbio.2016.08.005.
- Morgan, M. (2002). Experiments without material intervention: Model experiments, virtual experiments and virtually experiments. In H. Radder (Ed.), Scientific Experimentation and Its Philosophical Significance. Pittsburgh University Press.
- Mossio, M., Montévil, M., & Longo, G. (2016). Theoretical princi- ples for biology: Organization. Progress in Biophysics and Molecular Biology, 122, 24 -35. doi:10.1016/j.pbiomolbio.2016.07.005.
- Mugur-Schächter, M. (2002). Objectivity and descriptional relativities. Foundations of Science, 7 , 73 -180. doi:10.1023/A:1016095424229.
- Nadin, M. (2017). Rethinking the experiment: necessary (r) evolution. AI & SOCIETY , (pp. 1-19). doi:10.1007/s00146-017-0705-8.
- Patterson, F., & Linden, E. (1981). The education of Koko. Holt, Rinehart, and Winston.
- de Queiroz, K. (1992). Phylogenetic definitions and taxonomic philos- ophy. Biology and Philosophy, 7 , 295-313. doi:10.1007/BF00129972.
- Ryan, B. C., & Vandenbergh, J. G. (2002). Intrauterine position effects. Neuroscience & Biobehavioral Reviews, 26 , 665 -678. doi:10.1016/ S0149-7634(02)00038-6.
- Sacca, R., Elder, B., & Wasson, K. (2013). The C57BL/6 Mouse: The Role of the C57BL/6N Mouse in the Creation of Future Genetically Engineered Models. Charles River Laboratories International, Inc.
- Salam, A. (1990). Unification of Fundamental Forces. Cambridge Uni- versity Press.
- Schrödinger, E. (1944). What Is Life?. Cambridge U.P. Simpson, E. M., Linder, C. C., Sargent, E. E., Davisson, M. T., Mo- braaten, L. E., & Sharp, J. J. (1997). Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Na- ture genetics, 16 , 19. doi:10.1038/ng0597-19.
- Solter, D. (1998). Dolly is a clone-and no longer alone. Nature, 394, 315. Soto, A. M., Justicia, H., Wray, J. W., & Sonnenschein, C. (1991). p- nonyl-phenol: An estrogenic xenobiotic released from "modified" polystyrene. Environmental Health Perspectives, 92, 167-173. doi:10. 1289/ehp.9192167.
- Soto, A. M., Longo, G., Montévil, M., & Sonnenschein, C. (2016a). The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Progress in Biophysics and Molecular Biology, 122, 16 -23. doi:10.1016/j. pbiomolbio.2016.06.006.
- Soto, A. M., Longo, G., Noble, D., Perret, N., Montévil, M., Sonnen- schein, C., Mossio, M., Pocheville, A., Miquel, P.-A., Hwang, S.-Y. et al. (2016b). From the century of the genome to the century of the organism: New theoretical approaches. Progress in Biophysics and Molecular Biology, Special issue, (pp. 1-82).
- Spearow, J. L., Doemeny, P., Sera, R., Leffler, R., & Barkley, M. (1999). Genetic variation in susceptibility to endocrine disruption by estrogen in mice. Science, 285, 1259-1261.
- Stewart, E., Madden, R., Paul, G., & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45. doi:10.1371/journal.pbio.0030045.
- Susiarjo, M., Hassold, T. J., Freeman, E., & Hunt, P. A. (2007). Bisphe- nol a exposure in utero disrupts early oogenesis in the mouse. PLoS genetics, 3, e5. doi:10.1371/journal.pgen.0030005.
- Van Fraassen, B. (1989). Laws and symmetry. Oxford University Press, USA. Wagner, G. P. (2010). The measurement theory of fitness. Evolution, 64, 1358-1376. doi:10.1111/j.1558-5646.2009.00909.x.
- Weber, M. (2004). Philosophy of experimental biology. Cambridge uni- versity press.
- West, B. (2006). Where medicine went wrong: Rediscovering the path to complexity. Teaneck, NJ: World Scientific.
- West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.
- Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810-813. doi:10.1038/385810a0.
FAQs
AI
What are the limitations of biological measurements compared to physical measurements?
The paper reveals that biological measurements are influenced by historical context, making them more variable than physical measurements, which rely on stable mathematical structures.
How does historicity affect reproducibility in biological experiments?
The research finds that the principle of variation in biology suggests that reproducibility is complicated by the continuous evolution of biological objects and their respective contexts.
What implications does symmetrization have for biological measurement strategies?
The study demonstrates that symmetrization, both concrete and epistemic, determines how biological objects are treated in measurements, impacting their reproducibility and relevance in experimental settings.
How do genealogical contexts influence biological measurements?
The findings suggest that controlled genealogies provide insights into the shared past of specimens, thus ensuring that biological measurements are contextually relevant and meaningful.
What distinguishes case study measurements from traditional biological measurements?
The paper illustrates that case studies focus on singular instances without aiming for reproducibility, highlighting unique biological phenomena, unlike traditional methods that strive for generalizable results.
Maël Montévil