Here are a few simple truths about Data Quality: 1. Data without quality isn't trustworthy 2. Data that isn't trustworthy, isn't useful 3. Data that isn't useful, is low ROI Investing in AI while the underlying data is low ROI will never yield high-value outcomes. Businesses must put an equal amount of time and effort into the quality of data as the development of the models themselves. Many people see data debt as another form of technical debt - it's worth it to move fast and break things after all. This couldn't be more wrong. Data debt is orders of magnitude WORSE than tech debt. Tech debt results in scalability issues, though the core function of the application is preserved. Data debt results in trust issues, when the underlying data no longer means what its users believe it means. Tech debt is a wall, but data debt is an infection. Once distrust drips in your data lake, everything it touches will be poisoned. The poison will work slowly at first and data teams might be able to manually keep up with hotfixes and filters layered on top of hastily written SQL. But over time, the spread of the poison will be so great and deep that it will be nearly impossible to trust any dataset at all. A single low-quality data set is enough to corrupt thousands of data models and tables downstream. The impact is exponential. My advice? Don't treat Data Quality as a nice to have, or something that you can afford to 'get around to' later. By the time you start thinking about governance, ownership, and scale it will already be too late and there won't be much you can do besides burning the system down and starting over. What seems manageable now becomes a disaster later on. The earliest you can get a handle on data quality, you should. If you even have a guess that the business may want to use the data for AI (or some other operational purpose) then you should begin thinking about the following: 1. What will the data be used for? 2. What are all the sources for the dataset? 3. Which sources can we control versus which can we not? 4. What are the expectations of the data? 5. How sure are we that those expectations will remain the same? 6. Who should be the owner of the data? 7. What does the data mean semantically? 8. If something about the data changes, how is that handled? 9. How do we preserve the history of changes to the data? 10. How do we revert to a previous version of the data/metadata? If you can affirmatively answer all 10 of those questions, you have a solid foundation of data quality for any dataset and a playbook for managing scale as the use case or intermediary data changes over time. Good luck! #dataengineering
How to Build a Reliable Data Foundation for AI
Explore top LinkedIn content from expert professionals.
Summary
Building a reliable data foundation for AI is about ensuring that your data systems are well-structured, clean, and governed. Without reliable and relevant data, even the most advanced AI models can produce flawed outcomes, jeopardizing trust and hindering innovation.
- Prioritize data quality: Focus on preparing accurate, complete, and relevant data before implementing AI solutions, as poor data leads to unreliable results and undermines trust in AI.
- Establish clear governance: Define ownership, rules, and standards for data management to ensure accountability and a consistent flow of high-quality data.
- Build scalable systems: Develop infrastructure and processes that support data integrity, accessibility, and traceability to enable sustainable AI growth over time.
-
-
𝗪𝗵𝘆 𝗬𝗼𝘂𝗿 𝗔𝗜 𝗜𝗻𝘃𝗲𝘀𝘁𝗺𝗲𝗻𝘁 𝗜𝘀 𝗢𝗻𝗹𝘆 𝗮𝘀 𝗚𝗼𝗼𝗱 𝗮𝘀 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝘁𝗮𝗰𝗸 I recently spoke with a mid-sized high tech company that had spent $250,000 on AI solutions last year. Their ROI? Almost nothing. When we dug deeper, the issue wasn't the AI technology they'd purchased. It was the foundation it was built upon. 𝗧𝗵𝗲 𝗨𝗻𝗰𝗼𝗺𝗳𝗼𝗿𝘁𝗮𝗯𝗹𝗲 𝗧𝗿𝘂𝘁𝗵 𝗳𝗼𝗿 𝗦𝗠𝗕𝘀 Many of us are rushing to implement AI while overlooking the unsexy but critical component: 𝗼𝘂𝗿 𝗱𝗮𝘁𝗮 𝗶𝗻𝗳𝗿𝗮𝘀𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲. It's like building a sports car with a lawnmower engine. The exterior might look impressive, but the performance will always disappoint. 𝗧𝗵𝗲 𝟯 𝗣𝗶𝗹𝗹𝗮𝗿𝘀 𝗼𝗳 𝗮 𝗛𝗶𝗴𝗵-𝗣𝗲𝗿𝗳𝗼𝗿𝗺𝗮𝗻𝗰𝗲 𝗗𝗮𝘁𝗮 𝗦𝘁𝗮𝗰𝗸 After working with dozens of SMBs on their digital transformation, I've identified three non-negotiable elements: 𝟭. 𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗶𝗼𝗻 𝗕𝗲𝗳𝗼𝗿𝗲 𝗜𝗻𝗻𝗼𝘃𝗮𝘁𝗶𝗼𝗻 Before adding AI, ensure your existing systems talk to each other. One client discovered they had 7 different customer databases with conflicting information—no wonder their personalization efforts failed. 𝟮. 𝗖𝗹𝗲𝗮𝗻 𝗗𝗮𝘁𝗮 𝗶𝘀 𝗞𝗶𝗻𝗴 In a recent project, we found that just cleaning contact data improved sales conversion by 23%—before implementing any AI. Start with basic data hygiene; the returns are immediate. 𝟯. 𝗚𝗼𝘃𝗲𝗿𝗻𝗮𝗻𝗰𝗲 𝗮𝘀 𝗚𝗿𝗼𝘄𝘁𝗵 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝘆 The companies seeing the best AI results have clear data ownership and quality standards. This isn't just IT policy—it's business strategy that belongs in your leadership meetings. 𝗦𝘁𝗮𝗿𝘁 𝗦𝗺𝗮𝗹𝗹, 𝗦𝗰𝗮𝗹𝗲 𝗦𝗺𝗮𝗿𝘁 You don't need to overhaul everything at once. One retail client began by simply unifying their inventory and customer data systems. Six months later, their AI-powered recommendation engine was driving 17% more revenue per customer. 𝗧𝗵𝗲 𝗕𝗼𝘁𝘁𝗼𝗺 𝗟𝗶𝗻𝗲 Your competitors are likely making the same mistake: chasing AI capabilities while neglecting data fundamentals. The SMBs that will thrive aren't necessarily those with the biggest AI budgets, but those who build on solid data foundations. 𝗪𝗵𝗮𝘁'𝘀 𝗼𝗻𝗲 𝗱𝗮𝘁𝗮 𝗾𝘂𝗮𝗹𝗶𝘁𝘆 𝗶𝘀𝘀𝘂𝗲 𝘁𝗵𝗮𝘁'𝘀 𝗵𝗼𝗹𝗱𝗶𝗻𝗴 𝗯𝗮𝗰𝗸 𝘆𝗼𝘂𝗿 𝗯𝘂𝘀𝗶𝗻𝗲𝘀𝘀 𝗿𝗶𝗴𝗵𝘁 𝗻𝗼𝘄? I'd love to hear your challenges in the comments—and maybe share some solutions. #DataStrategy #SMBgrowth #AIreadiness #BusinessIntelligence #DigitalTransformation
-
Two weeks ago, while I was off radar on LinkedIn. The concept of data readiness for AI hit me hard… Not just as a trend. But as a gap in how most professionals and organizations are approaching this AI race. I’ve been in this field for over a decade now ▸Working with data. ▸Teaching it. ▸Speaking about it. And what I’ve seen repeatedly is this: We’re moving fast with AI. But our data is not always ready. Most data professionals and organizations focus on: ✓ the AI model ✓ the use case ✓ the outcome But they often overlook the condition of the very thing feeding the system: the data. And when your data isn’t ready → AI doesn’t get smarter. → It gets scarier. → It becomes louder, faster... and wrong. But when we asked the most basic questions, ▸Where’s the data coming from? ▸Is it current? ▸Was it collected fairly? That’s when we show what we are ready for. That’s why I created the R.E.A.D. Framework. A practical way for any data leader or AI team to check their foundation before scaling solutions. The R.E.A.D. Framework: R – Relevance → Is this data aligned with the decision or problem you’re solving? → Or just convenient to use? E – Ethics → Who’s represented in the data and who isn’t? → What harm could result from using it without review? A – Accessibility → Can your teams access it responsibly, across departments and tools? → Or is it stuck in silos? D – Documentation → Do you have clear traceability of how, when, and why the data was collected? → Or is your system one exit away from collapse? AI is only as strong as the data it learns from. If the data is misaligned, outdated, or unchecked, → your output will mirror those flaws at scale. The benefit of getting it right? ✓ Better decisions ✓ Safer systems ✓ Greater trust ✓ Faster (and smarter) innovation So before you deploy your next AI tool, pause and ask: Is our data truly ready or are we hoping the tech will compensate for what we haven’t prepared?
-
AI is only as powerful as the data it learns from. But raw data alone isn’t enough—it needs to be collected, processed, structured, and analyzed before it can drive meaningful AI applications. How does data transform into AI-driven insights? Here’s the data journey that powers modern AI and analytics: 1. 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗲 𝗗𝗮𝘁𝗮 – AI models need diverse inputs: structured data (databases, spreadsheets) and unstructured data (text, images, audio, IoT streams). The challenge is managing high-volume, high-velocity data efficiently. 2. 𝗦𝘁𝗼𝗿𝗲 𝗗𝗮𝘁𝗮 – AI thrives on accessibility. Whether on AWS, Azure, PostgreSQL, MySQL, or Amazon S3, scalable storage ensures real-time access to training and inference data. 3. 𝗘𝗧𝗟 (𝗘𝘅𝘁𝗿𝗮𝗰𝘁, 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺, 𝗟𝗼𝗮𝗱) – Dirty data leads to bad AI decisions. Data engineers build ETL pipelines that clean, integrate, and optimize datasets before feeding them into AI and machine learning models. 4. 𝗔𝗴𝗴𝗿𝗲𝗴𝗮𝘁𝗲 𝗗𝗮𝘁𝗮 – Data lakes and warehouses such as Snowflake, BigQuery, and Redshift prepare and stage data, making it easier for AI to recognize patterns and generate predictions. 5. 𝗗𝗮𝘁𝗮 𝗠𝗼𝗱𝗲𝗹𝗶𝗻𝗴 – AI doesn’t work in silos. Well-structured dimension tables, fact tables, and Elasticube models help establish relationships between data points, enhancing model accuracy. 6. 𝗔𝗜-𝗣𝗼𝘄𝗲𝗿𝗲𝗱 𝗜𝗻𝘀𝗶𝗴𝗵𝘁𝘀 – The final step is turning data into intelligent, real-time business decisions with BI dashboards, NLP, machine learning, and augmented analytics. AI without the right data strategy is like a high-performance engine without fuel. A well-structured data pipeline enhances model performance, ensures accuracy, and drives automation at scale. How are you optimizing your data pipeline for AI? What challenges do you face when integrating AI into your business? Let’s discuss.
-
*𝑆𝑖𝑔ℎ* Yet again, I hear another company excitedly talking about implementing AI—integrating it, scaling it, “revolutionizing everything”—and yet they gloss over the need for a robust data strategy. It takes all my energy not to pull my hair out as I cringe, listening to the words. But instead of yelling into the void, I’ve learned a better approach: I ask questions. Good ones. The kind that make leaders pause and realize that AI without solid data foundations is just a very expensive experiment. 𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬 𝐥𝐢𝐤𝐞: 1) What percentage of your data is truly usable—normalized, contextualized, indexed, and properly mapped? 2) How much of your data is “dark” (produced but unused), and what’s your plan to leverage it? 3) Do you have a defined data governance and data management framework, or is it mostly ad hoc? 4) What’s your process for ensuring data accuracy, completeness, and relevance for AI models? 5) How scalable is your data infrastructure to support AI at an enterprise level? 6) If AI solutions depend on a continuous flow of clean data, how confident are you that your processes can deliver that over time? This is when the lightbulb flickers. Because here’s the reality: You already produce more data than you know what to do with. And yet, no one is asking whether your data is reliable, clean, and strategically aligned. Oh, and let’s not forget—you’re probably not even collecting the right strategic data yet to unlock AI’s full potential. AI doesn’t live in isolation. It thrives on organized, high-quality data. Your first step to scaling AI shouldn’t be building models—it should be building a foundation: ✅ 𝐃𝐚𝐭𝐚 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 ✅ 𝐃𝐚𝐭𝐚 𝐠𝐨𝐯𝐞𝐫𝐧𝐚𝐧𝐜𝐞 ✅ 𝐃𝐚𝐭𝐚 𝐦𝐚𝐧𝐚𝐠𝐞𝐦𝐞𝐧𝐭 ✅ And, most importantly, a 𝐝𝐚𝐭𝐚 𝐬𝐭𝐫𝐚𝐭𝐞𝐠𝐲. 𝐒𝐨 𝐛𝐞𝐟𝐨𝐫𝐞 𝐲𝐨𝐮 𝐝𝐢𝐯𝐞 𝐢𝐧𝐭𝐨 𝐀𝐈, 𝐚𝐬𝐤 𝐲𝐨𝐮𝐫𝐬𝐞𝐥𝐟: “If AI is the engine of innovation, do we even have the fuel to power it?” (Trust me, the answer might surprise you.) ******************************************* • Visit www.jeffwinterinsights.com for access to all my content and to stay current on Industry 4.0 and other cool tech trends • Ring the 🔔 for notifications!
-
The AI-agent conversation is stuck. It is not only about efficiency. It is about reclaiming the opportunities we walked away from. 🚀 After years leading enterprise-scale digital programs and launching an AI Center of Excellence, I have learned that the noise around orchestration layers distracts us from the real prize. The goal is not simply to speed up today’s workflows. It is to revive strategic work we once labeled impossible. I watched a dormant lake of rail telemetry become a platform that now predicts failures, optimizes entire networks, and transforms daily operations. That is the frontier: turning forgotten data into predictive, revenue-generating engines that pay for their own growth. Beyond efficiency ➡️ recover abandoned value Think about the projects that never cleared pilot: • Indexing ten years of customer feedback. • Personalizing service for millions in real time. • Stress-testing every node in a global supply chain. Agents finally give us the cognitive muscle to tackle work at that scope—provided we pair them with rigorous retrieval pipelines and fine-tuned models rather than just “dropping an agent on the problem.” Why pilots stall ❌ weak data foundations Most stalled agent pilots I review break at the same point: the data model is blurry. No algorithm can reason with half-truths. Winning teams invest their energy up front, building precise domain-specific data structures before writing a single prompt. An agent’s power equals its data quality. My 4-step playbook ✅ 1. Model first – Design a semantic layer your agents trust. Capture the real language of your business. 2. Govern early – Create rules that let units share context without risking security or compliance. A strong data mesh is an accelerator. 3. Grow AI architects – Develop leaders who see abandoned opportunities and connect strategy, data, and delivery. 4. Iterate in the open – Run tight design–build–test loops. Visible progress builds trust each cycle. Five signs you are ready for agents 🔍 1. Architecture is model-first; data outranks UI polish. 2. Secure, context-aware agent calls (MCP, A2A—promising but still emerging) are planned from day one. 3. Observability—logs, replays, guardrails—is wired in up front. 4. A library of reusable agents stands on a common, trusted data layer. 5. Business and tech teams share a studio to co-create, monitor, and refine solutions. The race to agentic AI will not be won with marketplaces or shiny interfaces. Durable advantage belongs to leaders who transform lost ambitions and dormant data into measurable outcomes. 💡 #AIStrategy #DigitalTransformation #DataCentricAI #ValueCreation #AgenticAI #Innovation
-
My AI was ‘perfect’—until bad data turned it into my worst nightmare. 📉 By the numbers: 85% of AI projects fail due to poor data quality (Gartner). Data scientists spend 80% of their time fixing bad data instead of building models. 📊 What’s driving the disconnect? Incomplete or outdated datasets Duplicate or inconsistent records Noise from irrelevant or poorly labeled data Data quality The result? Faulty predictions, bad decisions, and a loss of trust in AI. Without addressing the root cause—data quality—your AI ambitions will never reach their full potential. Building Data Muscle: AI-Ready Data Done Right Preparing data for AI isn’t just about cleaning up a few errors—it’s about creating a robust, scalable pipeline. Here’s how: 1️⃣ Audit Your Data: Identify gaps, inconsistencies, and irrelevance in your datasets. 2️⃣ Automate Data Cleaning: Use advanced tools to deduplicate, normalize, and enrich your data. 3️⃣ Prioritize Relevance: Not all data is useful. Focus on high-quality, contextually relevant data. 4️⃣ Monitor Continuously: Build systems to detect and fix bad data after deployment. These steps lay the foundation for successful, reliable AI systems. Why It Matters Bad #data doesn’t just hinder #AI—it amplifies its flaws. Even the most sophisticated models can’t overcome the challenges of poor-quality data. To unlock AI’s potential, you need to invest in a data-first approach. 💡 What’s Next? It’s time to ask yourself: Is your data AI-ready? The key to avoiding AI failure lies in your preparation(#innovation #machinelearning). What strategies are you using to ensure your data is up to the task? Let’s learn from each other. ♻️ Let’s shape the future together: 👍 React 💭 Comment 🔗 Share
-
🚨 The real reason 60% of AI projects fail isn’t the algorithm, it’s the data. Despite 89% of business leaders believing their data is AI-ready, a staggering 84% of IT teams still spend hours each day fixing it. That disconnect? It’s killing your AI ROI. 💸 As CTO, I’ve seen this story unfold more times than I can count. Too often, teams rush to plug in models hoping for magic ✨ only to realize they’ve built castles on sand. I've lived that misalignment and fixed it. 🚀 How to Make Your Data AI-Ready 🔍 Start with use cases, not tech: Before you clean, ask: “Ready for what?” Align data prep with business objectives. 🧹 Clean as you go: Don't let bad data bottleneck great ideas. Hygiene and deduplication are foundational. 🔄 Integrate continuously: Break down silos. Automate and standardize data flow across platforms. 🧠 Context is king: Your AI can’t "guess" business meaning. Label, annotate, and enrich with metadata. 📊 Monitor relentlessly: Implement real-time checks to detect drift, decay, and anomalies early. 🔥 AI success doesn’t start with algorithms—it starts with accountability to your data.🔥 Quality in, quality out. Garbage in, garbage hallucinated. 🤯 👉 If you’re building your AI roadmap, prioritize a data readiness audit first. It’s the smartest investment you’ll make this year. #CTO #AIReadiness #DataStrategy #DigitalTransformation #GenAI
-
Scaling AI is less about model performance; it's about the infrastructure discipline and data maturity underneath it. One unexpected bottleneck companies often hit while trying to scale AI in production is “data lineage and quality debt.” Why it’s unexpected: Many organizations assume that once a model is trained and performs well in testing, scaling it into production is mostly an engineering and compute problem. But in reality, the biggest bottleneck often emerges from inconsistent, incomplete, or undocumented data pipelines—especially when legacy systems or siloed departments are involved. What’s the impact: Without robust data lineage (i.e., visibility into where data comes from, how it’s transformed, and who’s using it), models in production can silently drift or degrade due to upstream changes in data structure, format, or meaning. This creates instability, compliance risks, and loss of trust in AI outcomes in the regulated companies like Banking, Healthcare, Retail, etc. What’s the Solution: • Establish strong data governance frameworks early on, with a focus on data ownership, lineage tracking, and quality monitoring. • Invest in metadata management tools that provide visibility into data flow and dependencies across the enterprise. • Build cross-functional teams (Data + ML + Ops + Business) that own the end-to-end AI lifecycle, including the boring but critical parts of the data stack. • Implement continuous data validation and alerting in production pipelines to catch and respond to changes before they impact models. Summary: Scaling AI is less about model performance and more about the infrastructure discipline and data maturity underneath it.