I asked the smartest people I know about AI... I’ve been reading everything I can get my hands on. Talking to AI founders, skeptics, operators, and dreamers. And having some very real conversations with people who’ve looked me in the eye and said: “This isn’t just a tool shift. It’s a leadership reckoning.” Oh boy. Another one eh? Alright. I get it. My job isn’t just to understand disruption. It’s to humanize it. Translate it. And make sure my teams are ready to grow through it and not get left behind. So I asked one of my most fav CEOs, turned investor - a sharp, no-BS mentor what he would do if he were running a company today. He didn’t flinch. He gave me a crisp, practical, people-centered roadmap. “Here’s how I’d lead AI transformation. Not someday. Now.” I’ve taken his words, built on them, and I’m sharing my approach here, not as a finished product, but as a living, evolving plan I’m adopting and sharing openly to refine with others. This plan I believe builds capability, confidence, and real business value: 1A. Educate the Top. Relentlessly. Every senior leader must go through an intensive AI bootcamp. No one gets to opt out. We can’t lead what we don’t understand. 1B. Catalog the problems worth solving. While leaders are learning, our best thinkers start documenting real challenges across the business. No shiny object chasing, just a working list of problems we need better answers for. 2. Find the right use cases. Map AI tools to real problems. Look for ways to increase efficiency, unlock growth, or reduce cost. And most importantly: communicate with optimism. AI isn’t replacing people, it’s teammate technology. Say that. Show that. 3. Build an AI Helpdesk. Recruit internal power users and curious learners to be your “AI Coaches.” Not just IT support - change agents. Make it peer-led and momentum-driven. 4. Choose projects with intention. We need quick wins to build energy and belief. But you need bigger bets that push the org forward. Balance short-term sprints with long-term missions. 5. Vet your tools like strategic hires. The AI landscape is noisy. Don’t just chase features. Choose partners who will evolve with you. Look for flexibility, reliability, and strong values alignment. 6. Build the ethics framework early. AI must come with governance. Be transparent. Be intentional. Put people at the center of every decision. 7. Reward experimentation. This is the messy middle. People will break things. Celebrate the ones who try. Make failing forward part of your culture DNA. 8. Scale with purpose. Don’t just track usage. Track value. Where are you saving time? Where is productivity up? Where is human potential being unlocked? This is not another one-and-done checklist. Its my AI compass. Because AI transformation isn’t just about tech adoption. It’s about trust, learning, transparency, and bringing your people with you. Help me make this plan better? What else should I be thinking about?
How to Drive AI-Driven Change
Explore top LinkedIn content from expert professionals.
Summary
Driving AI-driven change means strategically adopting artificial intelligence (AI) within organizations to transform processes, improve efficiency, and unlock innovation. It requires a focus on technology, people, and ethical considerations to achieve sustainable growth and adoption.
- Train leaders and teams: Ensure all leadership and team members have access to AI education and practical workshops to build competence and confidence in utilizing AI tools.
- Start with clear goals: Identify and prioritize specific business problems that AI can solve, focusing on measurable outcomes that enhance operations or drive growth.
- Foster an adaptive culture: Promote a mindset shift by embedding AI into daily workflows, creating peer-led AI support networks, and encouraging continuous learning and experimentation.
-
-
🎯 The CIO's Organizational Playbook for the AI Era... I recently spoke with a CIO friend about how IT teams are changing. Our discussion made me think about what sets apart IT teams that succeed with AI from those that don’t. I looked over my research and reviewed my interviews with other leaders. This information is too valuable not to share: ✓ Build AI-Ready Capabilities 🟢 Establish continuous learning programs focused on practical AI applications 🟢 Implement cross-functional training to bridge technical/business gaps 🟢 Prioritize hands-on AI workshops over theoretical certifications ✓ Master AI Risk Management 🟢 Develop processes to identify and mitigate technical failures early 🟢 Create a strategic AI roadmap with clear risk contingency protocols 🟢 Align all AI initiatives with broader business objectives ✓ Drive Stakeholder Engagement 🟢 Build a cross-functional AI coalition (executives, HR, business units) 🟢 Communicate AI initiatives with transparency to reduce resistance 🟢 Document tangible benefits to secure continued buy-in ✓ Implement with Agility 🟢 Replace waterfall approaches with iterative AI development 🟢 Focus on quick prototyping and real-world testing 🟢 Ensure infrastructure scalability supports AI growth ✓ Lead with AI Ethics 🟢 Train teams on bias identification and mitigation techniques 🟢 Establish clear governance frameworks with accountability 🟢 Make responsible AI deployment non-negotiable ✓ Transform Your Talent Strategy 🟢 Enhance IT roles to integrate AI responsibilities 🟢 Create peer mentoring programs pairing AI experts with domain specialists 🟢 Cultivate an AI-positive culture through early wins ✓ Measure What Matters 🟢 Set specific AI KPIs that link directly to business outcomes 🟢 Implement continuous feedback loops for ongoing refinement 🟢 Track both technical metrics and organizational adoption rates The organizations mastering these elements aren't just surviving the AI transition—they're thriving because of it. #digitaltransformation #changemanagement #leadership #CIO
-
How can leaders transform their teams to be AI-first? It starts with mindset. An AI-first mindset means: Seeing AI as an opportunity, not a threat. Viewing AI as a tool to augment teams, not just automate tasks. Using AI to reimagine work, not just optimize work. As leaders, it’s on us to build this mindset within our teams. Here are 5 ways we do this at HubSpot: Use AI daily: Lead by example—trust grows when teams see leaders embrace AI themselves. I use it everyday and share very specific use cases with our company on how I use it. Now every leader is doing the same with their teams. The result is that we will have almost everyone in the company use AI daily by the end of year. Apply constraints: Give clear, focused challenges. We kept headcount flat in Support while growing the customer base by 20%+. Result - the team innovated with AI and over achieved the target. Smart constraints drive innovation. Establish tiger teams: Empower small, agile groups to experiment, innovate, and teach the organization. We have AI Tiger teams in every function - they share progress in Slack channels and there is so much energy with small groups experimenting and learning. Be a learn-it-all: Foster a culture of continuous learning. Share openly about successes and failures alike. We have dedicated 2 full days to learning and scaling with AI this quarter as a company - we have lined up great speakers, ways to experiment and gamified learning. Measure progress and share it: Measure which teams are completing learning modules, using AI everyday and share that openly. A little healthy competition goes a long way in driving AI-fluency. AI isn’t just a technology shift. It’s fundamentally reshaping how work gets done—and that requires shifting our mindset first. Leaders who embrace AI now will unlock creativity, performance, and impact. Are you building an AI-first mindset with your team? #Leadership #AI #Innovation #Mindset #FutureOfWork
-
In this latest Forbes article, I draw a compelling line from Ada Lovelace’s 19th-century foresight to today’s AI-driven enterprise transformations. Lovelace envisioned machines augmenting human creativity—a vision now realized as #generativeAI reshapes industries. Accenture's experience with over 2,000 gen AI projects reveals that only 13% of companies achieve significant enterprise-wide value, while 36% are scaling AI for industry-specific solutions. Success in this new era hinges on more than just technology investment. Companies must also invest in their people, prioritize industry-specific AI applications, and embed responsible AI practices from the outset. Organizations adopting agentic architecture - digital teams comprising orchestrator, super, and utility agents—are 4.5 times more likely to realize enterprise-level value. Here are five key lessons we’ve learned: 1. Lead with value from the top: Executive sponsorship is crucial. Companies with CEO sponsorship achieve 2.5 times higher ROI from their #AI investments. 2. Invest in people, not just technology: Empower your workforce with the skills to harness AI. Organizations excelling in AI transformation invest in broad AI upskilling, adopt dynamic workforce models, and enable human + agent collaboration. 3. Prioritize industry-specific AI solutions: Tailor AI applications to your sector’s unique needs. Companies creating enterprise-level value are 2.9 times more likely to have a comprehensive data strategy to support their AI efforts. 4. Design and embed AI responsibly from the start: Ensure ethical and effective AI integration. Organizations creating enterprise-level value are 2.7 times more likely to have responsible AI principles and governance in place across the AI lifecycle. 5. Reinvent continuously: Stay adaptable in the face of ongoing change. Companies with advanced change capabilities are 2.1 times more likely to achieve successful transformations. These lessons should serve as a practical playbook for navigating the complexities of #AI integration and achieving sustainable growth. Please read the full article to explore how Lovelace’s visionary ideas are shaping the future of business through #generativeAI. https://lnkd.in/gEVzQeRA
-
As a Global Capability Center(GCC) Leader, the Onus Is on You—Will You Drive AI Transformation or Get Left Behind? Most GCCs were not designed with AI at their core. Yet, AI is reshaping industries at an unprecedented pace. If your GCC remains focused on traditional service delivery, it risks becoming obsolete. The responsibility to drive this transformation does not sit with IT teams or innovation labs alone—it starts with you. As a GCC leader, you must push beyond cost efficiencies and position your center as a strategic AI hub that delivers business impact. How to Transform an Existing GCC into an AI-Native GCC This shift requires clear, measurable objectives. Here are five critical OKRs (Objectives & Key Results) to guide your AI transformation. 1. Embed AI in Core Business Processes Objective: Move beyond AI pilots and integrate AI into everyday decision-making. Key Results: • Automate 20 percent or more of manual workflows within 12 months. • Deploy AI-powered analytics in at least three business-critical functions. • Reduce operational decision-making time by 30 percent using AI insights. 2. Reskill and Upskill Talent for AI Readiness Objective: Develop an AI-fluent workforce that can build, deploy, and manage AI solutions. Key Results: • Train 100 percent of employees on AI fundamentals. • Upskill at least 30 percent of engineers in MLOps and GenAI development. • Establish an internal AI guild to drive AI innovation and best practices. 3. Build AI Infrastructure and MLOps Capabilities Objective: Create a scalable AI backbone for your organization. Key Results: • Implement MLOps pipelines to reduce AI model deployment time by 50 percent. • Establish a centralized AI data lake for enterprise-wide AI applications. • Deploy at least five AI use cases in production over the next year. 4. Shift from AI as an Experiment to AI as a Business Strategy Objective: Ensure AI initiatives drive measurable business value. Key Results: • Ensure 50 percent of AI projects are directly linked to revenue growth or cost savings. • Develop an AI governance framework to ensure responsible AI use. • Integrate AI-driven customer experience enhancements in at least three markets. 5. Change the Operating Model: From Service Delivery to Co-Ownership Objective: Position the GCC as a leader in AI-driven transformation, not just an execution arm. Key Results: • Rebrand the GCC internally as a center of AI-driven innovation. • Secure C-level sponsorship for AI-driven initiatives. • Establish at least three AI innovation partnerships with startups or universities. The question is not whether AI will reshape your GCC. It will. The time to act is now. Are you ready to drive the AI transformation? Let’s discuss how to accelerate your GCC’s AI journey. Zinnov Mohammed Faraz Khan Namita Dipanwita ieswariya Mohammad Mujahid Karthik Komal Hani Amita Rohit Amaresh
-
Every CEO I know is trying to figure out AI. But here’s the real challenge—adoption takes time. Just getting Microsoft Copilot or ChatGPT Premium isn’t the solution. The biggest struggle? Mindset. You can’t apply the same approach to everyone, and shifting the way people work takes effort. Recently, Akshata Alornekar (HR Manager) and Lidya Fernandes (Assistant Finance Manager)—who have a combined 30 years at SJI visiting NYC as part of our company policy to bring employees into different offices, helping them understand our culture and way of working. But what happened? → Every conversation turned into an AI hackathon. Spending time with us, we focused on showing them how @Shahera and I actively use AI in our daily work, not just talking about it, but demonstrating its impact. Seeing this firsthand shifted their perspective. “Before coming here, we were seeing AI from a 60 degree angle. But watching how you and the NYC team use it , it’s a full 180 degree shift!” This is why exposure and experience drive AI adoption. But many companies struggle because they treat AI like a tech upgrade. It’s not. AI adoption is a behavioral shift. How Companies Can Drive AI Adoption Effectively: → Lead from the Front AI is Not Just an IT Project C-level executives need to actively use AI in their own workflows. If leadership treats AI as an “IT tool” instead of a core business function, adoption will stall. Employees follow what leaders do, not just what they say. → Make AI a Part of Daily Workflows, Not Extra Work Employees resist AI when they see it as something “extra.” The best way to drive adoption? Embed AI into existing tasks automate reports, summarize meetings, or assist in decision-making. AI should feel like a time-saver, not another tool to manage. → Create AI Champions Inside the Organization Identify team members who are curious about AI and empower them to guide others. These AI champions can test new use cases, train colleagues, and help build momentum. AI adoption is easier when it spreads peer-to-peer, not just top-down. → Focus on Habit-Building, Not Just Training One-off AI workshops don’t work. AI adoption happens when employees use it consistently. Introduce small, daily challenges to get them comfortable just like Akshata and Lidya experienced in NYC. Seeing AI in action changed their perspective. → Repeat, Repeat, Repeat! AI adoption isn’t a one-time rollout—it’s a continuous process. Companies that embed AI into their culture, not just their technology, will be the ones that thrive. The companies that embrace AI culturally, not just technologically, will win. Are you leading AI adoption the right way? What’s been your biggest challenge? Let’s discuss.
-
The 5 Critical AI Transformation Truths From McKinsey & Company's latest State of AI report. This is what leaders must not miss: 1. AI Transformation = Workflow Reinvention If you're not redesigning how work happens, you're just adding expensive tools to broken systems. 2. Decisions Drive Impact: Not Dashboards Clear ownership. Fast decisions. Empowered teams. Waiting for perfect data or top-down alignment kills momentum. 3. Enterprise ROI Starts at the Edge Don’t chase enterprise-wide value without proof from the front lines. BU-level wins are where scale begins. 4. Governance Is a Leadership Act > Not a Committee Task If the CEO doesn’t own it, it won’t stick. AI transformation must be led, not managed. 5. Human Alignment > Tech Capability Training, trust, execution. AI doesn’t fail because of the model it fails because of the people around it. Your Next Step: Choose one truth to focus on first. Start with the most relevant to your current business situation.
-
Love this: Change is changing. Phenomenal insights and tips from Heather Conklin. I can’t help but think about the AI “brain” and our human ones under the influence of change and stress. What do we share, and how are we different? How are we complimentary? AI is advancing the nature of and pace of change. Humans do, too. (Case in point, the last 100 days.) It turns out, we have that ability in common. But does AI struggle to adapt to change the way humans do? Not really. When humans struggle with change our “reptilian brain” (fight or flight) is activated by evolutionary design. If AI does not have the same brain mechanics, can AI actually support humans to understand, navigate and master change with our full brains? Tough Day thinks so. And that makes AI our human-positive parter. Building on Heather’s points: 1.) Help everyone know the plan — with AI. Once you’ve documented the strategy, AI can make it available to your people on demand to interrogate it, build on it, and integrate it into their work. 2) Set and reinforce principles and guardrails into your AI. AI can embody those values and behaviors. (We did this working with our clients in state of Hawaii to create a version of Tuffy with “aloha spirit” to guide it’s voice, behaviors, recommendations.) 3) Communicate like it’s a campaign— AI can communicate on your behalf in the teachable moment 24x7. Repetition can be frustrating and time-consuming for leaders. Make sure to teach AI the messaging to be available on demand to remind people what’s happening, why it’s happening, what to consider. 4) Create a space for real reflection. Yes, AI can provide that safe space— without fear of judgement, retailiation, or shame. Anyone can say what they really think, anyway they want to say it. (67% of people now trust AI more than their human managers according to the Resume AI Report 2025.) Note to human leaders— you need to create and engage in these spaces, too! 5) Build two-way feedback loops and actually listen? Humans-this is on you to build these muscles. And, yes, AI can help in a couple of ways. First, AI can deliver anonymized insights to leaders as signals that guide their decision making. They might even be more authentic insights as there are not politics involved in who gets heard. Second, AI can help employees learn how to effectively give and receive feedback, practice tough conversations, and build the confidence to have more direct, honest, HUMAN conversation IRL. We’ve heard countless stories from users about how their experience inside Tough Day enabled them to effectively master a real human conversation at work. So what does all this mean for humans? There is no replacement for great human coaches and leaders at all levels who embody these principles. We need you and we celebrate you. And consider that AI can be an effective partner to help scale these capabilities and make humans more resilient in ever-changing change. Human + AI.
-
🚀 Where’s the Value in AI? 🚀 Despite all the buzz around artificial intelligence (AI), only 4% of companies are creating substantial value with it, according to new research by BCG. If you're wondering how to move beyond pilots and proofs of concept to drive real impact, this is the playbook you've been waiting for. Here’s what sets AI leaders apart: 🎯 Big Ambitions, Bigger Targets: Leaders aim for transformational outcomes—think billions in cost savings and revenue growth. 🤝 People & Processes First: It’s not just about the tech; leaders prioritize workforce enablement and reimagining processes. 📈 Focused Investments: Instead of spreading resources thin, leaders invest strategically in high-priority opportunities. ⚡ GenAI Ready: From content creation to qualitative reasoning, leaders are leveraging generative AI to innovate faster. 📊 The Results? AI leaders are delivering: 45% more cost reduction than others. 60% higher revenue growth. A 2x higher ROI on AI initiatives. 🏆 How You Can Join the 4%? BCG outlines a 7-step playbook to shift your AI trajectory: 1 - Set a bold strategic commitment from the top. 2 - Maximize the potential value of AI with initiatives that include streamlining everyday business processes, transforming entire business functions, and developing new offerings. 3 - Implement one to three high-value, easy-to-implement initiatives to fund the journey. 4 - Ensure that the minimal viable infrastructure required for these initiatives exists. 5 - Perform an AI maturity assessment to baseline current critical capability gaps versus peers. 6 - Ensure that implementation governance focuses on people and processes over technology and algorithms. 7 - Set up guardrails to deploy AI responsibly. Source: "Where’s the Value in AI?", BCG, October 2024 👉 Let’s discuss: What’s your biggest challenge in scaling AI for impact? #AI #generativeAI #bcg #marcelointech #artificialintelligence
-
How I would lead through AI disruption in a leadership role If I were stepping into a management or director-level role in the maintenance or defense industry today, AI would be at the top of my priorities. Here’s how I’d lead the shift. 1. Make maintenance data-driven The old way: wait for things to break, then fix them. The new way: use AI to spot problems before they happen. With AI-powered diagnostics, you can see patterns in sensor data, spot early signs of wear, and predict failures before they ground a jet or stall a convoy. This means less downtime, longer equipment life, and safer teams. It also means you stop wasting time and money on guesswork. 2. Build hybrid teams The best maintainers now need more than a wrench. They need to read digital dashboards, understand AI alerts, and work with data analysts. That means hiring people who can do both: fix hardware and think in systems. It also means retraining your current team to bridge the gap. The future is hands-on plus high-tech. 3. Tie AI to real results AI is not a science project. If it doesn’t boost readiness, it’s not worth it. Every AI tool must connect to a clear goal: more sorties, fewer breakdowns, faster repairs. Track metrics like Mean Time Between Failures (MTBF) and downtime. If the numbers don’t move, change your approach. 4. Explain the “why” to your team Change is hard. People worry about being replaced. Be clear: AI is here to help, not to take jobs. Show how it makes work safer, smarter, and less stressful. Keep the team in the loop at every step. 5. Lead for adaptability You don’t need to be the AI expert. You need to build a team that can learn, adapt, and lead as tech evolves. That’s the real job now. I'm Randall, a Navy Veteran using AI-Enhanced Career Coaching to help job seekers get noticed by getting results that took me 18 months in less than 15 days. ★ LinkedIn Top Voice for Career Coaching ★ AI-Enhanced Career Coaching Your Career, Advance It. +Follow me +Tap the 🔔 on my profile P.S. The right job search strategy works for you—even when you're not online. DM me to find out how I can help you get this. #defenseleadership #operationsmanagement #AI #defenseindustry #teamdevelopment #executiveleadership