Summary of entries of Methods for langchain-google-firestore.
langchain_google_firestore.chat_message_history.FirestoreChatMessageHistory.add_message
add_message(message: langchain_core.messages.base.BaseMessage) -> NoneAdd a Message object to the store.
See more: langchain_google_firestore.chat_message_history.FirestoreChatMessageHistory.add_message
langchain_google_firestore.chat_message_history.FirestoreChatMessageHistory.clear
clear() -> NoneRemove all messages from the store.
See more: langchain_google_firestore.chat_message_history.FirestoreChatMessageHistory.clear
langchain_google_firestore.document_loader.FirestoreLoader.lazy_load
lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]A lazy loader for Documents.
See more: langchain_google_firestore.document_loader.FirestoreLoader.lazy_load
langchain_google_firestore.document_loader.FirestoreLoader.load
load() -> typing.List[langchain_core.documents.base.Document]Load Documents.
See more: langchain_google_firestore.document_loader.FirestoreLoader.load
langchain_google_firestore.document_loader.FirestoreSaver
FirestoreSaver(collection: Optional[str] = None, client: Optional[Client] = None)Document Saver for Google Cloud Firestore.
See more: langchain_google_firestore.document_loader.FirestoreSaver
langchain_google_firestore.document_loader.FirestoreSaver.delete_documents
delete_documents( documents: typing.List[langchain_core.documents.base.Document], document_ids: typing.Optional[typing.List[str]] = None, ) -> NoneDelete documents from the Firestore database.
See more: langchain_google_firestore.document_loader.FirestoreSaver.delete_documents
langchain_google_firestore.document_loader.FirestoreSaver.upsert_documents
upsert_documents( documents: typing.List[langchain_core.documents.base.Document], merge: typing.Optional[bool] = False, document_ids: typing.Optional[typing.List[str]] = None, ) -> NoneCreate / merge documents into the Firestore database.
See more: langchain_google_firestore.document_loader.FirestoreSaver.upsert_documents
langchain_google_firestore.vectorstores.FirestoreVectorStore
FirestoreVectorStore( collection: google.cloud.firestore_v1.collection.CollectionReference | str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, client: typing.Optional[google.cloud.firestore_v1.client.Client] = None, content_field: str = "content", metadata_field: str = "metadata", embedding_field: str = "embedding", distance_strategy: typing.Optional[ google.cloud.firestore_v1.base_vector_query.DistanceMeasure ] = DistanceMeasure.COSINE, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, )Constructor for FirestoreVectorStore.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore
langchain_google_firestore.vectorstores.FirestoreVectorStore._encode_image
_encode_image(uri: str) -> strGet base64 string from a image URI.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore._encode_image
langchain_google_firestore.vectorstores.FirestoreVectorStore.add_images
add_images( uris: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, store_encodings: bool = True, **kwargs: typing.Any ) -> typing.List[str]Adds image embeddings to Firestore vector store.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.add_images
langchain_google_firestore.vectorstores.FirestoreVectorStore.add_texts
add_texts( texts: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]Add or update texts in the vector store.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.add_texts
langchain_google_firestore.vectorstores.FirestoreVectorStore.delete
delete(ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any) -> NoneDelete documents from the vector store.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.delete
langchain_google_firestore.vectorstores.FirestoreVectorStore.from_texts
from_texts( texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, collection: typing.Optional[ typing.Union[str, google.cloud.firestore_v1.collection.CollectionReference] ] = None, **kwargs: typing.Any ) -> langchain_google_firestore.vectorstores.FirestoreVectorStoreCreate a FirestoreVectorStore instance and add texts to it.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.from_texts
langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search
max_marginal_relevance_search( query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]Run max marginal relevance search on the results of Firestore nearest neighbor search.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search
langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search_by_vector
max_marginal_relevance_search_by_vector( embedding: typing.List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]Run max marginal relevance search on the results of Firestore nearest neighbor search using a vector.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search_by_vector
langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search
similarity_search( query: str, k: int = 4, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]Run similarity search with Firestore.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search
langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search_by_vector
similarity_search_by_vector( embedding: typing.List[float], k: int = 4, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]Run similarity search with Firestore using a vector.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search_by_vector
langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search_image
similarity_search_image( image_uri: str, k: int = 4, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]Run image similarity search with Firestore.
See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search_image