Package Methods (0.4.0)

Summary of entries of Methods for langchain-google-firestore.

langchain_google_firestore.chat_message_history.FirestoreChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_firestore.chat_message_history.FirestoreChatMessageHistory.clear

clear() -> None

langchain_google_firestore.document_loader.FirestoreLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

langchain_google_firestore.document_loader.FirestoreLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

langchain_google_firestore.document_loader.FirestoreSaver

FirestoreSaver(collection: Optional[str] = None, client: Optional[Client] = None)

Document Saver for Google Cloud Firestore.

See more: langchain_google_firestore.document_loader.FirestoreSaver

langchain_google_firestore.document_loader.FirestoreSaver.delete_documents

delete_documents( documents: typing.List[langchain_core.documents.base.Document], document_ids: typing.Optional[typing.List[str]] = None, ) -> None

Delete documents from the Firestore database.

See more: langchain_google_firestore.document_loader.FirestoreSaver.delete_documents

langchain_google_firestore.document_loader.FirestoreSaver.upsert_documents

upsert_documents( documents: typing.List[langchain_core.documents.base.Document], merge: typing.Optional[bool] = False, document_ids: typing.Optional[typing.List[str]] = None, ) -> None

Create / merge documents into the Firestore database.

See more: langchain_google_firestore.document_loader.FirestoreSaver.upsert_documents

langchain_google_firestore.vectorstores.FirestoreVectorStore

FirestoreVectorStore( collection: google.cloud.firestore_v1.collection.CollectionReference | str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, client: typing.Optional[google.cloud.firestore_v1.client.Client] = None, content_field: str = "content", metadata_field: str = "metadata", embedding_field: str = "embedding", distance_strategy: typing.Optional[ google.cloud.firestore_v1.base_vector_query.DistanceMeasure ] = DistanceMeasure.COSINE, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, )

Constructor for FirestoreVectorStore.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore

langchain_google_firestore.vectorstores.FirestoreVectorStore._encode_image

_encode_image(uri: str) -> str

langchain_google_firestore.vectorstores.FirestoreVectorStore.add_images

add_images( uris: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, store_encodings: bool = True, **kwargs: typing.Any ) -> typing.List[str]

Adds image embeddings to Firestore vector store.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.add_images

langchain_google_firestore.vectorstores.FirestoreVectorStore.add_texts

add_texts( texts: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]

Add or update texts in the vector store.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.add_texts

langchain_google_firestore.vectorstores.FirestoreVectorStore.delete

delete(ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any) -> None

Delete documents from the vector store.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.delete

langchain_google_firestore.vectorstores.FirestoreVectorStore.from_texts

from_texts( texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, collection: typing.Optional[ typing.Union[str, google.cloud.firestore_v1.collection.CollectionReference] ] = None, **kwargs: typing.Any ) -> langchain_google_firestore.vectorstores.FirestoreVectorStore

Create a FirestoreVectorStore instance and add texts to it.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.from_texts

langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search

max_marginal_relevance_search( query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

Run max marginal relevance search on the results of Firestore nearest neighbor search.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search

langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector( embedding: typing.List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

Run max marginal relevance search on the results of Firestore nearest neighbor search using a vector.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.max_marginal_relevance_search_by_vector

langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search

similarity_search( query: str, k: int = 4, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search_by_vector

similarity_search_by_vector( embedding: typing.List[float], k: int = 4, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

Run similarity search with Firestore using a vector.

See more: langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search_by_vector

langchain_google_firestore.vectorstores.FirestoreVectorStore.similarity_search_image

similarity_search_image( image_uri: str, k: int = 4, filters: typing.Optional[google.cloud.firestore_v1.base_query.BaseFilter] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]