A particle of mass $m$ is subjected to a force $F(r) = -\nabla V(r)$ such that the wave function $\varphi(p, t)$ satisfies the momentum-space Schrödinger equation
$$\left(\frac{p^2}{2m}-a\Delta^2_p\right) \varphi (p,t) = i\frac{\partial \varphi (p,t)}{ \partial t}$$
where $\hbar = 1$, $a$ is some real constant and
$$\Delta^2_p \equiv \frac{\partial^2 }{ \partial p^2_x} + \frac{\partial^2}{ \partial p^2_y } + \frac{\partial^2 }{\partial^2_z} \, .$$
How do we find force $F(r) \equiv -\nabla V(r)$?
We know that the coordinate and momentum representations of a wave function are related by
$$\\psi (r,t) = \left(\frac {1}{2\pi}\right)^{\frac {3}{2}} \int \varphi (k,t) e^{ik\cdot r} \mathrm dk \tag {1}$$
$$\varphi (k,t) = \left(\frac {1}{2\pi}\right)^{\frac {3}{2}} \int \psi (r,t) e^{-ik\cdot r} \mathrm dr \tag {2}$$
where $k \equiv p / \hbar$ with $Ii = 1$.