Let $X_1,X_2,\dots$ be some sequence of random variables.
Prove that there exist some sequence $a_1,a_2,\dots$ of non-zero real numbers such that the sequence $\frac{X_1}{a_1},\frac{X_2}{a_2},\dots$ converges almost surely to $0$.
From Borel–Cantelli only need to show that for every $\epsilon>0$ : $$\sum\limits_{n=1}^{\infty} \Pr\Bigg[\Bigg|\frac{X_n}{a_n}\Bigg|\geq\epsilon\Bigg]<\infty$$
This is true if and only if we can choose $a_1,a_2,\dots$ such that
$$\sum\limits_{n=1}^{\infty} \Pr[|X_n|\geq\epsilon|a_n|]<\infty$$