Prove that $\cosh x-1\equiv \frac12(e^{0.5x}-e^{-0.5x})^2$
I'm stuck on what appears to be the last step, please could someone explain where I have made a mistake?
\begin{align} \frac12(e^{0.5x}-e^{-0.5x})^2 & \equiv \frac12(\sinh(0.5x))^2 \\ & \equiv \frac12\sinh^2(0.5x) \\ & \equiv \frac12(\cosh^2(0.5x) -1) \\ & \equiv \frac12((\frac{e^{0.5x}+e^{-0.5x}}{2})^2 -1) \\ & \equiv \frac12((\frac{e^x+e^{-x}+2}4) -1) \\ & \equiv \frac14((\frac{e^x+e^{-x}+2}2)-2) \\ & \equiv \frac14(\frac{e^x+e^{-x}}2+\frac22-2) \\ & \equiv \frac14(\frac{e^x+e^{-x}}{2}-1) \\ & \equiv \frac14(\cosh x-1) \\ \end{align}
which is a quarter of what I am trying to prove?