3
$\begingroup$

The common method of evaluating the integral below is by using the substitution $x = a \sin u$ which gives: $$\int\frac{dx}{\sqrt{a^2-x^2}}= \arcsin\Bigl(\frac xa\Bigr) + C.$$ But, using this substitution led me down a path that seems to give a different answer (or, at least, a different form). Did I make a mistake, or are the two forms somehow equivalent?

$$x = ai\tan u $$ $$x^2=-a^2\tan^2(u)du$$ $$dx = ai\sec^2(u)du$$ $$1+\tan^2(u)=\sec^2(u)$$

\begin{align} \int\frac{dx}{\sqrt{a^2-x^2}} & = \int\frac{1}{\sqrt{a^2+a^2\tan^2(u)}}\cdot ai\sec^2(u)du \\ & = ai\int \frac{\sec^2(u)}{\sqrt{a^2(1+\tan^2(u))}}du \\ & = \frac{ai}{a} \int \frac {\sec^2(u)}{\sec(u)}du \\ & = i \int \sec(u)du \\ & =i \ln \lvert \sec(u)+\tan(u)\rvert + C \\ & = i \ln \bigl| \frac {\sqrt{x^2-a^2}}{ai} + \frac {x}{ai} \bigr| + C \\ & = i \ln \bigl| \frac {-i\sqrt{x^2-a^2}}{a} - \frac {ix}{a} \bigr| + C \\ & = i \ln \bigl| -i\frac {\sqrt{x^2-a^2}+x}{a} \bigr| + C\\ & = i \Big[ \ln \lvert -i \rvert + \ln \bigl|\frac {\sqrt{x^2-a^2}+x}{a} \bigr| \Big] + C\\ & = i \ln \bigl|\frac {\sqrt{x^2-a^2}+x}{a} \bigr| + C \end{align}

$\endgroup$
1
  • $\begingroup$ You're treating $u$ as a real-valued variable when you wrote $\int \sec(u)\,du=\log \left(\left|\sec(u)+\tan(u)\right|\right)+C$. It isn't a real-valued variable. $\endgroup$ Commented Jul 27, 2018 at 21:04

2 Answers 2

2
$\begingroup$

First, we have for complex $u$

$$\int \sec(u)\,du=\log(\sec(u)+\tan(u))+C$$

Next, we note that for $x=ia\tan(u)$ and $a\ge x$

$$\begin{align} i\log(\sec(u)+\tan(u))+C&=i\log\left(\frac{\sqrt{x^2-a^2}}{ia}+\frac{x}{ia}\right)+C\\\\ &=i\log(x+i\sqrt{a^2-x^2})+C'\\\\ &=-\arctan\left(\frac{\sqrt{a^2-x^2}}{x}\right)+C''\\\\ &=\arctan\left(\frac{x}{\sqrt{a^2-x^2}}\right)+C'''\\\\ &=\arcsin(x/a)+C'''' \end{align}$$

And we are done.

$\endgroup$
1
$\begingroup$

Hint:

Note that $$y = \sin(x) = \frac{e^{ix}-e^{-ix}}{2} = \frac{e^{i2x}-1}{2e^{ix}}.$$ Consequently, $$(e^{ix})^2+2y\cdot e^{ix}-1=0 \implies e^{ix} = -y\pm\sqrt{y^2+1} \implies x = ?$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.