I want to know if my understand (prove convexity, format as SDP) the following problem is correct: \begin{equation*} \begin{aligned} & \min_{c\in \mathbb{C}^n,D\in \mathbb{H}_+^n} && \|c\|_2 + \lambda \cdot \mathrm{Tr}(D) \\ & \text{subject to} && h^Tc + \mathrm{Tr}(H^TD) = b\\ &&& D \succeq 0 \end{aligned} \end{equation*} where $D \in \mathbb{H}_+^n$ is a Hermitian Positve-Semidefinite Matrix.
This problem is derived from Trace Heuristic of Matrix rank-minimization, but is regularized with a vector $c$ and the equality constraint has term $c$ in it.
Proof Convexity
To show that the problem above is a minimizing a convex function over a convex set, I show that the objective is jointly convex in $(c,D)$ and the equality constraint admits a convex set over $(c,D)$. The SDP cone constraint is convex and does not need to be shown.
From here, I write $x = (c,D) \in \mathbb{C}^n \times \mathbb{H}_+^n$ and write $\mathbf{X} = \mathbb{C}^n \times \mathbb{H}_+^n$
Convex Objective
For any $\theta \in [0,1]$, for given $x_1=(c_1,D_1),x_2=(c_2,D_1) \in \mathbf{X}$, we denote convex combination as $x_3 = \theta x_1 + (1-\theta) x_2$, noting that $x_3 =(c_3,D_3) \in \mathbf{X}$.
\begin{equation} \begin{split} f(\theta x_1 + (1-\theta) x_2) &= \|\theta c_1 + (1-\theta)c_2\|_2 +\lambda \cdot \mathrm{Tr}(\theta D_1 + (1-\theta) D_2) \\ &\leq \theta\|c_1\|_2 +(1-\theta)\|c_2\|_2 + \theta \lambda \mathrm{Tr}(D) + (1-\theta)\lambda\mathrm{Tr}(D) \\ &= \theta f(x_1) + (1+\theta)f(x_2) \end{split} \end{equation}
Convex Set
Simply by the affine nature of the equality.
SDP
Let $\mathbf{Y} = \begin{bmatrix} diag(c) & 0 \\ 0 & D\end{bmatrix}$ Re-formulate the problem as : \begin{equation*} \begin{aligned} & \min_{Y\in \mathbb{H}_+^{2n}} && \langle \begin{bmatrix} diag(c) & 0 \\ 0 & \lambda I_n\end{bmatrix} , Y\rangle_{\mathbb{H}^n_+} \\ & \text{subject to} && \langle \begin{bmatrix} diag(h) & 0 \\ 0 & H\end{bmatrix}, Y\rangle_{\mathbb{H}^n_+} =b \\ &&& Y \succeq 0 \quad (\dagger) \end{aligned} \end{equation*} ($\dagger$): This inequality is stronger in the sense that it forces $Re(c) \geq 0$ whereas the original formulation has no such constraint.
My Questions
- Is my proof of convexity correct?
- How to formulate the problem as an SDP? Specifically, what do with the inequality constraint?