Let $ M $ be a smooth manifold, and let $ X\colon M\to \mathrm TM $ be a vector field on $ M $.
If we pick a chart $ (U,\psi\colon U\to \underline U\subset \mathbb R^n) $ we can define a smooth local frame $ \partial_1,\dots,\partial_n\colon U\to \mathrm TM $ by $$ \partial_j(p) = \Bigl(p,\left.\frac{\partial}{\partial\phi^j}\right|_p\Bigr) $$ for every $ p\in U $, where $ \partial/\partial\phi^j|_p $ is the basis vector on $ \mathrm T_pM $ induced by the chart $ (U,\phi = (\phi^1,\dots,\phi^n)) $.
We can thus write $$ X(p) = \sum_{j = 1}^n a^j(p)\partial_j(p) $$ for $ p\in M $, where $$ a^j(p) = X_p(\phi_p^j) $$ is the $ j $-th coordinate of the vector $ X_p\in \mathrm T_pM $, where $ X(p) = (p,X_p) $.
I'm trying to show that the functions $$ a^j\colon U\to \mathbb R $$ are smooth, but I got lost in the formalism. Why are they smooth?