For non-negative random variables $X_1,...X_n\overset{\text{iid}}{\sim} F$, $F$ is said to be a sub-exponential distribution if $$\lim_{x\rightarrow\infty}\frac{P(X_1+...X_n>x)}{P(X_1>x)}=n$$ for some $n\ge2$.
Result. If this holds for some value of $n\ge2$, then it holds for all $n\ge2$.
I want to prove this result using induction. Assume it holds for some $n=k\ge2$. We want to show that it holds for $n=k+1$ too i.e., $$\lim_{x\rightarrow\infty}\frac{P(S_k>x)}{P(X_1>x)}=k\Rightarrow \lim_{x\rightarrow\infty}\frac{P(S_{k+1}>x)}{P(X_1>x)}=k+1$$ where, $S_k=X_1+X_2+...X_k$.
Attempt. We decompose the sum as
$$P(S_{k+1}>x)=P(S_k+X_{k+1}>x)=P(S_k>x)+P(X_{k+1}>x)-P(S_k>x,X_{k+1}>x)+P(S_k<x, X_{k+1}<x,S_{k+1}>x)$$ Dividing both sides by $P(X_1>x)$, $$\frac{P(S_{k+1}>x)}{P(X_1>x)}=\frac{P(S_k>x)}{P(X_1>x)}+\frac{P(X_{k+1}>x)}{P(X_1>x)}-\frac{P(S_k>x,X_{k+1}>x)}{P(X_1>x)}+\frac{P(S_k<x, X_{k+1}<x,S_{k+1}>x)}{P(X_1>x)}$$ Taking limit, $$\lim_{x\rightarrow\infty}\frac{P(S_{k+1}>x)}{P(X_1>x)}=\lim_{x\rightarrow\infty}\left[\frac{P(S_k>x)}{P(X_1>x)}+\frac{P(X_{k+1}>x)}{P(X_1>x)}-\frac{P(S_k>x,X_{k+1}>x)}{P(X_1>x)}+\frac{P(S_k<x, X_{k+1}<x,S_{k+1}>x)}{P(X_1>x)}\right]\\=k+1+\lim_{x\rightarrow\infty}\left[-\frac{P(S_k>x,X_{k+1}>x)}{P(X_1>x)}+\frac{P(S_k<x, X_{k+1}<x,S_{k+1}>x)}{P(X_1>x)}\right]$$
Since $X_i$'s are iid, $P(S_k>x,X_{k+1}>x)=P(S_k>x)P(X_{k+1}>x)=P(S_k>x)P(X_1>x)$ $$\lim_{x\rightarrow\infty}\frac{P(S_{k+1}>x)}{P(X_1>x)}=k+1+\lim_{x\rightarrow\infty}\left[-P(S_k>x)+\frac{P(S_k<x, X_{k+1}<x,S_{k+1}>x)}{P(X_1>x)}\right]$$
How do I proceed from here? Any hints would be appreciated.