Recently, I came across a very nice question from the 1985 AIME:
Let $A$, $B$, $C$ and $D$ be the vertices of a regular tetrahedron, each of whose edges measures $1$ meter. A bug, starting from vertex $A$, observes the following rule: at each vertex it chooses one of the three edges meeting at that vertex, each edge being equally likely to be chosen, and crawls along that edge to the vertex at its opposite end. Let $p = \frac{n}{729}$ be the probability that the bug is at vertex $A$ when it has crawled exactly $7$ meters. Find the value of $n$.
It immediately clicked to me that this is a Markov process and I just need to form the transition matrix, which I did, and it is
$$ T = \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{bmatrix} $$
Now the only problem remains in finding $[a_{11}]T^7$ which I right now did by calculator, but is there a way to do it smartly without using calculator and completely manually?