0
$\begingroup$

Assume a directed graph $G=(V,E)$ and that it is the graphical representation of a Markov Chain with transition matrix $P$.

Then, the graph vertices stand for the Markov Chain states and edges for valid transitions between states : \begin{equation} (i,j)\in E \;\Leftrightarrow\; P_{ij}>0 \end{equation} where $P_{ij}$ is the probability that next state is $j$ knowing current state is $i$. The transition matrix has then all its rows normalized.

I would like to prove that if $P$ admits $-1$ as eigenvalue, then $G$ is a bipartite graph.

If $-1$ is an eigenvalue of $P$, then there exists a vector $v$ such that : \begin{equation} vP=-v\;\Longleftrightarrow\; \forall\, k\;,\quad -v_{k} = \sum_{i=1}^{n}P_{ik}v_{i}\qquad (1) \end{equation}

I first assume the graph to be $d$ -regular : \begin{equation} P_{ij} = \begin{cases} \frac{1}{d}&,\text{if}\; (i,j)\in E\\ 0&,\text{otherwise} \end{cases} \end{equation} So (1) becomes : \begin{equation} \forall\, k\;,\quad -v_{k} d = \sum_{(i,k)\in E}v_{i} \end{equation}

Let $M$, $\mathcal{S}_{+}$ and $\mathcal{S}_{-}$ be : \begin{equation} \label{eq:33} M = \max_{k}\{\vert v_{k}\vert\}\;,\quad \mathcal{S}_{ + } = \{k\,/\; v_{k} = M \}\;,\quad \mathcal{S}_{-} = \{k\,/\; v_{k} = -M \} \end{equation} Then, for $k\in \mathcal{S}_{+}$ : \begin{equation} k\in \mathcal{S}_{+}\;\Rightarrow\; - Md = \sum_{(i,k)\in E}v_{i}\qquad (2) \end{equation} The only solution for (2) to hold is that \begin{equation} \forall\,i\,/\; (i,k)\in E\;,\quad v_{i} =- M \end{equation} that is to say $i\in\mathcal{S}_{-}$.

So far, this shows that for any vertex in $\mathcal{S}_{+}$, its sole edges are with $\mathcal{S}_{ -}$ vertices, and conversely. In other words, we created a vertex partition : \begin{equation} V = \mathcal{S}_{+ } \cup \mathcal{S}_{ -}\;,\quad \mathcal{S}_{+}\cap \mathcal{S}_{ -} = \emptyset \end{equation} so that \begin{equation} E = \biggl\{(i,j)\,/\; (i\in \mathcal{S}_{+ }\wedge j\in \mathcal{S}_{ -})\vee(i\in \mathcal{S}_{- }\wedge j\in \mathcal{S}_{ +}) \biggr\} \end{equation}

which is the definition of a bipartite graph.

I wonder if it is possible to extend this demonstration to the general case represented by (1) ?

\begin{equation} \forall\, k\;,\quad -v_{k} = \sum_{i=1}^{n}P_{ik}v_{i}\qquad (3) \end{equation} My intuition is that if $v_k$ is "positive enough" in (3), then given that $P_{ik}\ge 0$, all $v_i$ such that $(i,k)\in E$ should be "negative enough" for (3) to hold.

So, I redefine $\mathcal{S}_{+}$ and $\mathcal{S}_{-}$ this way : \begin{equation} m = \min_{k}\{\vert v_{k}\vert\}\;,\quad \mathcal{S}_{ + } = \{k\,/\; v_{k} \ge m \}\;,\quad \mathcal{S}_{-} = \{k\,/\; v_{k} \le -m \} \end{equation}

I should first exclude the case $m=0$, I assume for the moment that $m>0$.

Then, for $k\in\mathcal{S}_+$ : \begin{equation} v_k \ge m\;\Rightarrow\; -v_k \le -m\;\Rightarrow\;\sum_{i=1}^{n}P_{ik}v_{i}\le -m \qquad (4) \end{equation} So, whenever $P_{ik}>0$, $v_{i}$ should be "negative enough" for (4) to hold.

If there is only one $P_{ik}>0$, this clearly shows that $v_i \le -m$ and that $i\in \mathcal{S}_{-}$.

After that, I searched without success. Do you have any hint ?

$\endgroup$
2
  • $\begingroup$ The version of the Perron-Frobenius theorem presented here would be sufficient for these purposes: a stochastic matrix with eigenvalue $-1$ must have a period $h$ that is divisible by $2$... $\endgroup$ Commented Apr 2 at 17:01
  • $\begingroup$ ... and the fact that $P$ is permutation-similar to a matrix of the form $$ \begin{pmatrix} O & P_1 & O & O & \ldots & O \\ O & O & P_2 & O & \ldots & O \\ \vdots & \vdots &\vdots & \vdots & & \vdots \\ O & O & O & O & \ldots & P_{h-1} \\ P_h & O & O & O & \ldots & O \end{pmatrix} $$ corresponds to an $h$-partite "decomposition" of the corresponding graph $\endgroup$ Commented Apr 2 at 17:02

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.