Let $H \in (0,1)$ and let $\delta \ge 0 $ and let $d \in {\mathbb N}_+$. We are interested in computing a probability that, in a fractional Brownian Noise with Hurst exponent $H$ there are $n$ consecutive returns that are all bigger in magnitude than a threshold $\delta$.
In other words we want to find a closed form expression for the quantity below:
\begin{equation} {\mathcal J}^{(n)}(\delta,H):= \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} \int\limits_{{\mathbb R}^n} e^{-\frac{1}{2} \vec{r} \cdot \Sigma^{-1} \cdot \vec{r}^T} \cdot \left(\prod\limits_{j=1}^d 1_{|r_j| \ge \delta } d r_j \right) \tag{1} \end{equation}
where $\Sigma:= \left( f^{(H)}(i-j)\right)_{i=1,j=1}^{n,n}$ with $f^{(H)}(l) := 1/2 \left( |1+l|^{2 H} - 2 |l|^{2 H} + |l-1|^{2 H}\right) $.
We managed to compute this quantity for $n=3$. We define auxiliary quantities as follows:
\begin{eqnarray} C_1(H) &:=& \frac{1}{\sqrt{\frac{\left(2^{2 H+1}-9^H-3\right) \left(-2^{6 H+1}+2\ 9^H+3\ 16^H-81^H+144^H-1\right)}{-2^{2 H+1}-9^H+16^H+1}}} \\ C_2(H) &:=&2^{-H} \sqrt{\frac{1}{4-4^H}} \\ D_1(H)&:=& -\frac{1}{\left(-2^{2 H+1}-9^H+16^H+1\right) \sqrt{\frac{1}{-2^{6 H+1}+2\ 9^H+3\ 16^H-81^H+144^H-1}}} \\ D_2(H)&:=& -\sqrt{\frac{1}{-2^{6 H+1}+2\ 9^H+3\ 16^H-81^H+144^H-1}} \end{eqnarray} and $ (l_j(H))_{j=1}^7 := \left\{2^{2 H+1}-9^H-1,4^H+2\ 9^H+16^H-36^H-2,-7\ 4^H+2\ 9^H+3\ 16^H-36^H-2,-2\ 9^H+16^H+2,3\ 4^H-9^H-5,4^H-9^H-1,4^H-2\right\}$.
With those definitions at hand our result reads as below:
\begin{align} \mathcal{J}^{(3)}(\delta, H) &= 3 - 3 \, \mathrm{erf}\left(\frac{\delta}{\sqrt{2}}\right) - 4\, T\left(\delta, \frac{2^{-H}}{\sqrt{\frac{1}{4 - 4^H}}}\right) - 4\, T\left(\delta, 2^H \sqrt{\frac{1}{4 - 4^H}}\right) \notag \\ &\quad + 4\, T\left(\delta, \frac{1}{(-3 + 2^{2H+1} - 9^H) C_1(H)}\right) - 2\, T\left(\delta, \frac{1}{(1 + 2^{2H+1} - 9^H) C_1(H)}\right) \notag \\ &\quad + 2\, T\left(\delta, (-3 + 2^{2H+1} - 9^H) C_1(H)\right) \notag \\ &\quad + \int_{\mathbb{R}} \bigg[ T\left(C_1(H)(2\delta + r l_1(H)), \frac{D_1(H)(\delta l_5(H) + r l_7(H))}{2\delta + r l_1(H)}\right) \notag \\ &\quad - T\left(C_1(H)(r l_1(H) - 2\delta), \frac{D_1(H)(\delta l_5(H) - r l_7(H))}{r l_1(H) - 2\delta}\right) \notag \\ &\quad + T\left(C_1(H)(2\delta + r l_1(H)), \frac{D_1(H)(\delta l_6(H) - r l_7(H))}{2\delta + r l_1(H)}\right) \notag \\ &\quad - T\left(C_1(H)(r l_1(H) - 2\delta), \frac{D_1(H)(\delta l_6(H) + r l_7(H))}{r l_1(H) - 2\delta}\right) \notag \\ &\quad + T\left(C_2(H)(2\delta + r l_7(H)), \frac{D_1(H)(\delta l_2(H) + r l_4(H))}{2\delta + r l_7(H)}\right) \notag \\ &\quad - T\left(C_2(H)(r l_7(H) - 2\delta), \frac{D_1(H)(\delta l_2(H) - r l_4(H))}{r l_7(H) - 2\delta}\right) \notag \\ &\quad + T\left(C_2(H)(r l_7(H) - 2\delta), \frac{D_1(H)(\delta l_3(H) - r l_4(H))}{r l_7(H) - 2\delta}\right) \notag \\ &\quad - T\left(C_2(H)(2\delta + r l_7(H)), \frac{D_1(H)(\delta l_3(H) + r l_4(H))}{2\delta + r l_7(H)}\right) \notag \\ &\quad + \frac{1}{4} \left(\mathrm{sgn}(4\delta - 2r l_1(H)) + \mathrm{sgn}(4\delta + 2r l_1(H))\right) \notag \\ &\qquad \times \left(\mathrm{sgn}(2\delta - r l_7(H)) + \mathrm{sgn}(2\delta + r l_7(H))\right) \bigg] \notag \\ &\quad \times \frac{e^{-\frac{1}{2} r^2}}{\sqrt{2\pi}} \, \mathbf{1}_{|r| \ge \delta} \, dr \qquad (2) \end{align}
The code below verifies the result.
(*Definitions*) Clear[CC1, DD1, DD2]; CC1[H_] := 1 / Sqrt[((-3 + 2^(1 + 2 H) - 9^H) (-1 - 2^(1 + 6 H) + 2 9^H + 3 16^H - 81^H + 144^H))/(1 - 2^(1 + 2 H) - 9^H + 16^H)]; CC2[H_] := 2^-H Sqrt[1/(4 - 4^H)]; DD1[H_] := -( 1/((1 - 2^(1 + 2 H) - 9^H + 16^H) Sqrt[( 1/(-1 - 2^(1 + 6 H) + 2 9^H + 3 16^H - 81^H + 144^H))] )); DD2[H_] := -Sqrt[( 1/(-1 - 2^(1 + 6 H) + 2 9^H + 3 16^H - 81^H + 144^H))] ; In[7342]:= (*Identity 4*) (*For a fractional Brownian Noise with drift what is the likelihood \ that three consecutive returns Subscript[r, k-l2,]Subscript[r, \ k-l1,]Subscript[r, k] are all bigger then a threshold? *) H = RandomReal[{0.45, 0.55}];(*Hurst exponent.*) dd = RandomReal[{0, 1}];(*Trigger*) {l1, l2} = RandomInteger[{1, 10}, 2];(*Lag values.*){l1, l2} = {1, 2}; b = RandomReal[{0, 1}, 3];(*External field.*)b = {0, 0, 0}; f[l_] := 1/2 (-2 Abs[l]^(2 H) + Abs[1 + l]^(2 H) + Abs[-1 + l]^(2 H)); Sig := {{1, f[l1], f[l2]}, {f[-l1], 1, f[l2 - l1]}, {f[-l2], f[l1 - l2], 1}}; AA = Inverse[Sig]; (*************) (*For a fractional Brownian Noise with drift what is the likelihood \ that three consecutive returns Subscript[r, k-l2,]Subscript[r, \ k-l1,]Subscript[r, k] are all bigger then a threshold? *) Print["H,dd,b,l1,l2=", {H, dd, b, l1, l2}]; 1/Sqrt[(2 \[Pi])^3 Det[Sig]] NIntegrate[ Exp[-1/2 {r1, r2, r3} . (AA . {r1, r2, r3})] If[ Abs[r1] > dd && Abs[r2] > dd && Abs[r3] > dd, 1, 0], {r1, -Infinity, Infinity}, {r2, -Infinity, Infinity}, {r3, -Infinity, Infinity}] (*Try to reduce the above to a closed form expression:*) Clear[l1, l2, l3, l4, l5, l6, l7]; l1[H_] := (-1 + 2^(1 + 2 H) - 9^H); l2[H_] := (-2 + 4^H + 2 9^H + 16^H - 36^H); l3[H_] := (-2 - 7 4^H + 2 9^H + 3 16^H - 36^H); l4[H_] := (2 - 2 9^H + 16^H); l5[H_] := (-5 + 3 4^H - 9^H); l6[H_] := (-1 + 4^H - 9^H); l7[H_] := (-2 + 4^H); (3 - 3 Erf[dd/Sqrt[2]] + -4 OwenT[dd, 2^-H/Sqrt[1/(4 - 4^H)]] - 4 OwenT[dd, 2^H Sqrt[1/(4 - 4^H)]] + 4 OwenT[dd, 1/((-3 + 2^(1 + 2 H) - 9^H) CC1[H] )] + 2 OwenT[dd, (-3 + 2^(1 + 2 H) - 9^H) CC1[H]] - 2 OwenT[dd, 1/((1 + 2^(1 + 2 H) - 9^H) CC1[H])] + 1/Sqrt[2 \[Pi]] NIntegrate[( ( -OwenT[CC1[H] (-2 dd + l1[H] r3), DD1[H] (l5[H] dd - l7[H] r3)/(-2 dd + l1[H] r3)] + OwenT[CC1[H] (2 dd + l1[H] r3), DD1[H] (l5[H] dd + l7[H] r3)/(2 dd + l1[H] r3)]) + (-OwenT[CC1[H] (-2 dd + l1[H] r3), DD1[H] (l6[H] dd + l7[H] r3)/(-2 dd + l1[H] r3)] + OwenT[CC1[H] (2 dd + l1[H] r3), DD1[H] (l6[H] dd - l7[H] r3)/(2 dd + l1[H] r3)]) + (-OwenT[CC2[H] (-2 dd + l7[H] r3), DD2[H] (l2[H] dd - l4[H] r3)/(-2 dd + l7[H] r3)] + OwenT[CC2[H] (2 dd + l7[H] r3), DD2[H] (l2[H] dd + l4[H] r3)/(2 dd + l7[H] r3)]) + (OwenT[CC2[H] (-2 dd + l7[H] r3), DD2[H] (l3[H] dd - l4[H] r3)/(-2 dd + l7[H] r3)] - OwenT[CC2[H] (2 dd + l7[H] r3), DD2[H] (l3[H] dd + l4[H] r3)/(2 dd + l7[H] r3)]) + ( (Sign[2 dd - l7[H] r3] + Sign[2 dd + l7[H] r3]) (Sign[4 dd + 2 l1[H] r3] + Sign[4 dd - 2 l1[H] r3]))/4 ) E^(-(r3^2/2)) If[Abs[r3] > dd, 1, 0], {r3, -Infinity, Infinity}] ) During evaluation of In[7342]:= H,dd,b,l1,l2={0.486717,0.768615,{0,0,0},1,2} Out[7350]= 0.0864547 Out[7359]= 0.0864547 Now, my question is the following. Is is possible to express the the last integral in the right hand side in (2) through some known special functions? In other words we ask to find the antiderivative $ \int \exp(-1/2 x^2) T(a x+ b, \frac{c_1 x+ d_1}{c_2 x+ d_2}) dx = ?$