Right, so what are we allowed to know?
Let's say we know that $$e^x=\sum_{i=0}^\infty\frac{x^i}{i!}$$ and $$e^{-x}=\sum_{i=0}^\infty\frac{(-1)^ix^i}{i!}$$
Multiply these together, and we get
$$e^xe^{-x}=\left(\sum_{i=0}^\infty\frac{x^i}{i!}\right)\left(\sum_{i=0}^\infty\frac{(-1)^ix^i}{i!}\right)$$
which equals
$$ \sum_{i=0}^\infty\sum_{j=0}^\infty\frac{x^i}{i!}\frac{(-1)^jx^j}{j!} =\sum_{i=0}^\infty\sum_{j=0}^\infty\frac{(-1)^jx^{i+j}}{i!j!} $$
writing $k=i+j$, and we get
$$\sum_{k=0}^\infty\sum_{j=0}^k\frac{(-1)^jx^{k}}{(k-j)!j!}=\sum_{k=0}^\infty\sum_{j=0}^k\frac{x^k}{k!}\frac{(-1)^jk!}{(k-j)!j} =\sum_{k=0}^\infty\left[\sum_{j=0}^k\frac{(-1)^jk!}{(k-j)!j}\right]\frac{x^k}{k!}$$
The binomial theorem helps us simplify the square bracket. We know that
$$\sum_{j=0}^k\frac{a^jk!}{(k-j)!j}=(1+a)^k$$
with the special case $a=-1$ and $k=0$ yielding $1$. That is,
$$ \sum_{j=0}^k \frac{(-1)^j k!}{(k-j)! j} = \begin{cases} 1, & \text{if } k=0, \\ 0, & \text{otherwise}. \end{cases} $$
So $$\sum_{k=0}^\infty\left[\sum_{j=0}^k\frac{(-1)^jk!}{(k-j)!j}\right]\frac{x^k}{k!}=1{\cdot}\frac{x^0}{0!}+\sum_{k=1}^\infty0{\cdot}\frac{x^k}{k!}=1+0=1$$
That is, $e^xe^{-x}=1$, so we can conclude $e^{-x}=\frac1{e^x}$.