Find the number of non-negative integers solutions to the equation $$x_1+x_2+x_3+x_4=12$$ when $x_1=2x_2+2$ and $x_3 \le x_4$.
My try:
Iv'e substituted $x_1$, thus the equation is $3x_2+x_3+x_4=10$. Second, we may define $x_4=x_3+y$ where $y \ge 0$ and the final equation is $3x_2+2x_3+y=10$.
Now we can write $$g(x)=\sum_{k=0}^{\infty} \left(x^{3k} \right) \sum_{i=0}^{\infty} \left(x^{2i} \right) \sum_{j=0}^{\infty} \left(x^j \right)=\frac{1}{(1-x^3)(1-x^2)(1-x)}$$
I know how to continue, but it's far too complicated and messy... I'm looking for an easier way.
Please help, thank you!