How to transform $\sum_{n=2}^\infty n^2x^n$ to $\sum_{n=1}^\infty nx^n$
1 Answer
$\begingroup$ $\endgroup$
1 $f(x)= \sum\limits_{n=2}^{\infty} n^{2}x^{n}$ and $g(x)= \sum\limits_{n=1}^{\infty} nx^{n}$ then $g(x)=nx+ \int_0^x \frac {f(t)} t dt$.
- $\begingroup$ The question is very ambiguous... but the (correct) way you answer should be less allusive by giving names $f(x)=...$, $g(x)=...$,and writing it $g(x)=\int \dfrac{f(x)}{x}dx$ $\endgroup$Jean Marie– Jean Marie2019-04-05 12:21:49 +00:00Commented Apr 5, 2019 at 12:21