We observe that for any $m \in \mathbb N$,
$$\limsup_{n\rightarrow\infty} \frac{S_n}{\sqrt n} = \limsup_{n\rightarrow\infty} (\frac{1}{\sqrt n}\sum_{i=m}^n X_i + \frac{1}{\sqrt n}\sum_{i=1}^{m-1} X_i ).$$
The second term in parentheses goes to 0 as $n\rightarrow\infty$. Thus we find
$$\limsup_{n\rightarrow\infty} \frac{S_n}{\sqrt n} = \limsup_{n\rightarrow\infty} \frac{1}{\sqrt n}\sum_{i=m}^n X_i .$$
and so
$$\{\limsup_{n\rightarrow\infty} \frac{S_n}{\sqrt n} > A\} = \{\limsup_{n\rightarrow\infty} \frac{1}{\sqrt n}\sum_{i=m}^n X_i > A\} .$$
The limsup of a sequence of random variables which is measurable with respect to a certain $\sigma$-algebra is also measurable with respect to that $\sigma$-algebra. Thus the event on the right side above is in $\bigcap_{n=m}^\infty \sigma(X_i : i\geq n)$. This proves the first statement.
For the second, we apply the Kolmogorov zero-one law to deduce that $P\{\limsup_{n\rightarrow\infty} \frac{S_n}{\sqrt n} > A\} = 0$ or $1$. So, to prove the second claim it suffices to show that this event has positive probability. By the central limit theorem, $\lim_{n\rightarrow\infty} P\{\frac{S_n}{\sqrt n} > A\} > 0$. So, with positive probability there exist arbitrarily large $n$ with $\frac{S_n}{\sqrt n} > A$. Thus $P\{\limsup_{n\rightarrow\infty} \frac{S_n}{\sqrt n} > A\} > 0$, which proves the result.