Imagine a grayscale image, $M$.
We know that somewhere within $M$ is a dark spot $S$ with brightness values of $0$.
Can we find the borders of $S$ using block matrix multiplication, such that the result of each block matrix multiplication is a probability that it contains $S$?
Example
$M = \begin{bmatrix} . \space . \space 0 \space . \space . \space . \space . \space . \space . \space . \space . \space . \space \\ 0 \space 0 \space 0 \space 0 \space . \space . \space . \space . \space . \space . \space . \space . \space \\ . \space 0 \space 0 \space . \space . \space . \space . \space 0 \space . \space . \space . \space . \space \\ . \space . \space . \space . \space . \space . \space . \space . \space . \space 0 \space . \space . \space \\ . \space . \space . \space . \space . \space . \space 0 \space . \space 0 \space . \space 0 \space . \space \end{bmatrix} $
$B= \text{ matrix made of blocks}$
$MB = \begin{bmatrix} \sim 1 \space \sim 0 \\ \sim 0 \space \sim 0 \end{bmatrix} \text{ if there were 4 blocks} $
Note
If there's another good way to efficiently identify where $S$ is, I'll accept that answer too.