2
$\begingroup$

The problem I am considering is the following:
\begin{align*} &\max_{p = (p_1, p_2,\cdots, p_N)} \int_{v} \sum_{i=1}^{N} v_i p_i(v) dv - \int_{v} \sum_{i=1}^{N} \frac{ |\nabla p_i(v)|^2}{p_i(v)}dv \\ & s.t. \quad p_i(v) >0 \;\; \forall i \;\; \forall v \in [0,1]^n\\ & \quad \quad \sum_{i=1}^N p_i(v) =1 \;\; \forall i \;\; \forall v \in [0,1]^n \end{align*} where $v=(v_1,v_2,\cdots,v_N) \in [0,1]^N$, and $p(v)=(p_1(v),p_2(v),\cdots,p_N(v))$ is a mapping from $[0,1]^N$ to $[0,1]^N$, with the constraint that $\sum_{i=1}^N p_i(v) =1$, we can also think that $p(v)$ is a discrete distribution of support size $N$ . And $\nabla p_i(v)=(\frac{\partial p_i(v)}{\partial v_1},\frac{\partial p_i(v)}{\partial v_2},\cdots,\frac{\partial p_i(v)}{\partial v_N})$. The term $\sum_{i=1}^{N} \frac{ |\nabla p_i(v)|^2}{p_i(v)}$ is the fisher information of the family of the discrete distribution $\{p(v)\}_{v}$, and throughout we assume $p$ satisfies the regularity condition to ensure the fisher information is well-defined.

I am looking for help on whether my derivation of the Euler-Lagrange equation is correct and help on solving the corresponding equation if it is correct.


I am assuming that each $p_i$ is a $\mathcal{C}^2$ function, and consider the Lagrangian $J(p)=\int_{v} \sum_{i=1}^{N} [v_i p_i(v) - \frac{ |\nabla p_i(v)|^2}{p_i(v)}] dv+ \int_{v} \mu(v)(1-\sum_{i=1}p_i(v)) dv$, and the function $g(\lambda) = J(p^* + \lambda h) $ where $h$ is a commonly supported smooth function that vanish on the boundary of $[0,1]^N$. Since the function $g(\lambda)$ is maximized at $0$, we hence have the necessary condition $g'(0)=0$, which implies that \begin{align*} 0 &= \int_v \sum_i^N [v_i h_i(v)+ \frac{ |\nabla p^*_i(v)|^2}{p^*_i(v)^2}h_i(v) - \frac{\langle \nabla p_i^*(v) , \nabla h_i(v) \rangle }{p^*_i(v)} - \mu(v) h_i(v) ]dv\\ &=\int_v \sum_i^N [v_i h_i(v)+ \frac{ |\nabla p^*_i(v)|^2}{p^*_i(v)^2}h_i(v) - \mu(v) h_i(v) ]dv -\int_v \textbf{div} (h_i(v) \frac{\nabla p^*_i(x)}{p_i^*(v)})- h_i(x) \textbf{div} (\frac{\nabla p^*_i(v) }{p_i^*(v)}) dv & (\text{Integration by parts})\\ &=\int_v \sum_i^N [v_i h_i(v)+ \frac{ |\nabla p^*_i(v)|^2}{p^*_i(v)^2}h_i(v) - \mu(v) h_i(v) ]dv - \int_{\partial [0,1]^n} h_i(x) \frac{\nabla p_i^*(v)}{p_i^*(v)} \nu dS - \int_v h_i(x) \textbf{div} (\frac{\nabla p^*_i(v)}{p_i^*(v)}) dv & (\text{Divergence theorem})\\ &= \int_v \sum_i^N [v_i h_i(v)+ \frac{ |\nabla p^*_i(v)|^2}{p^*_i(v)}h_i(v) - \mu(v) h_i(v) +h_i(x) \textbf{div} (\frac{\nabla p^*_i(v)}{p_i^*(v)}) dv & (h_i \text{ vanishes at the boundary})\\ &=\int_v \sum_i^N h_i(v)[v_i + \frac{ |\nabla p^*_i(v)|^2}{p^*_i(v)^2} - \mu(v) +( \frac{\sum_{j}^{n}(\frac{\partial p^*_i(v)}{\partial v_j})^2}{p_i^*(v)^2} -\frac{\sum_{j}^{n}\frac{\partial^2 p^*_i(v)}{\partial v_j^2}}{p_i^*(v)} )] dv\\ &=\int_v \sum_i^N h_i(v)[v_i + 2\frac{ |\nabla p^*_i(v)|^2}{p^*_i(v)^2} - \mu(v) -\frac{\Delta p_i^*(v)}{p_i^*(v)} ] dv \end{align*}

Since any the derivation holds for any smooth and compactly supported perturbation $h$, we have: $$v_i + 2\frac{ |\nabla p^*_i(v)|^2}{p^*_i(v)^2} - \mu(v) -\frac{\Delta p_i^*(v)}{p_i^*(v)} =0 \quad \quad \forall i, \forall v$$

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.