0
$\begingroup$

Consider the box function: $g_\epsilon=\frac{1}{2\epsilon}\chi_{[-\epsilon,\epsilon]}:\mathbb{R}\rightarrow \mathbb{R}$ for $\epsilon>0$. For a step function $t$, being a finite linear combination of characteristic functions, I want to show the following:

$\|t*g_\epsilon-t\|_1 \rightarrow0$ for $\epsilon \rightarrow0$.

I thought it would be best to show this first for one "step" of $t$, so some characteristic function on a bounded interval I:

$\|\chi_{I}*g_\epsilon-\chi_{I}\|_1=\int_{\mathbb{R}}|\frac{1}{2\epsilon}\int_{[x-\epsilon,x+\epsilon]}{\chi_I(y)dy}-\chi_I(x)|dx$

However, from this point I do not really know how to proceed. Any help would be appreciated.

$\endgroup$

1 Answer 1

1
$\begingroup$

Let´s start with a "single step" $t(x) = \chi_{[a,b]}(x)$ for some interval $[a,b]$.

Let $h_\epsilon(x) = (\chi_{[a,b]} * g_\epsilon)(x)$. By definition of the convolution we get $$ h_\epsilon(x) = \frac{1}{2\epsilon} \int_{x-\epsilon}^{x+\epsilon} \chi_{[a,b]}(y) dy $$ We have 4 cases to consider:

  • Case 1: If $x+\epsilon < a$ or $x-\epsilon > b$ the intervals do not overlap, i.e. $h_\epsilon(x) = 0$.
  • Case 2: If $a+\epsilon \le x \le b-\epsilon$ then $h_\epsilon(x) = \frac{1}{2\epsilon}(2\epsilon) = 1$.
  • Case 3: If $a-\epsilon \le x < a+\epsilon$ then $h_\epsilon(x) = \frac{x+\epsilon-a}{2\epsilon}$.
  • Case 4: If $b-\epsilon < x \le b+\epsilon$ then $h_\epsilon(x) = \frac{b-x+\epsilon}{2\epsilon}$.

Now, $$ \|h_\epsilon - \chi_{[a,b]}\|_1 = \int_{-\infty}^{\infty} |h_\epsilon(x) - \chi_{[a,b]}(x)| dx $$ The integrand has its support in $[a-\epsilon, a+\epsilon]$ and $[b-\epsilon, b+\epsilon]$.

  1. Integral around $a$: $\int_{a-\epsilon}^{a+\epsilon} |h_\epsilon(x) - \chi_{[a,b]}(x)| dx$

    • For $x \in [a-\epsilon, a)$, $\chi_{[a,b]}(x) = 0$ and $h_\epsilon(x) = \frac{x-a+\epsilon}{2\epsilon}$.
    • For $x \in [a, a+\epsilon]$, $\chi_{[a,b]}(x) = 1$ and $h_\epsilon(x) = \frac{x-a+\epsilon}{2\epsilon}$. And we get

    $$ \int_{a-\epsilon}^{a} \left|\frac{x-a+\epsilon}{2\epsilon} - 0\right| dx + \int_{a}^{a+\epsilon} \left|\frac{x-a+\epsilon}{2\epsilon} - 1\right| dx =\frac \epsilon 2 $$

  2. Integral around $b$: $\int_{b-\epsilon}^{b+\epsilon} |h_\epsilon(x) - \chi_{[a,b]}(x)| dx$

    By symmetry, the area will also be $\frac{\epsilon}{2}$.

Hence the total $L^1$-norm will be: $$ \|\chi_{[a,b]}*g_\epsilon - \chi_{[a,b]}\|_1 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \to 0, \quad \epsilon \to 0. $$


Now, let $t$ be a general step function, $t(x) = \sum_{i=1}^n c_i \chi_{I_i}(x)$. We use the linearity of the convolution operator and the triangle inequality:

$$ \|t*g_\epsilon - t\|_1 = \left\| \left(\sum_{i=1}^n c_i \chi_{I_i}\right)*g_\epsilon - \left(\sum_{i=1}^n c_i \chi_{I_i}\right) \right\|_1 \\ = \left\| \sum_{i=1}^n c_i \left( \chi_{I_i}*g_\epsilon - \chi_{I_i} \right) \right\|_1 \\ \le \sum_{i=1}^n |c_i| \left\| \chi_{I_i}*g_\epsilon - \chi_{I_i} \right\|_1 \\= \epsilon \left( \sum_{i=1}^n |c_i| \right) $$ The term $C = \sum_{i=1}^n |c_i|$ is a finite, positive constant that depends only on the step function $t$, not on $\epsilon$. Therefore, we have: $$ 0 \le \|t*g_\epsilon - t\|_1 \le C \cdot \epsilon \to 0.$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.