By making use of \begin{align} F_{n} = \frac{\alpha^{n} - \beta^{n}}{\alpha - \beta} \end{align} where $2 \alpha = 1+ \sqrt{5}$ and $2 \beta = 1 - \sqrt{5}$, then \begin{align} \sum_{n=0}^{\infty} F_{2n} \, x^{2n} &= \frac{1}{\alpha - \beta} \, \left( \frac{1}{1-\alpha^{2} x^{2}} - \frac{1}{1 - \beta^{2} x^{2}} \right) = \frac{F_{2} \, x^{2}}{1 - L_{2} x^{2} + x^{4}} \end{align} where $L_{n}$ are the Lucas numbers.
By using the difference equation $F_{2n+4} = a F_{2n+2} + b F_{2n}$ then \begin{align} \sum_{n=0}^{\infty} F_{2(n+2)} \, x^{2n} &= a \sum_{n=0}^{\infty} F_{2(n+1)} \, x^{2n} + b \sum_{n=0}^{\infty} F_{2n} \, x^{2n} \\ \sum_{n=2}^{\infty} F_{2n} \, x^{2n-4} &= a \sum_{n=1}^{\infty} F_{2n} \, x^{2n-2} + b \sum_{n=0}^{\infty} F_{2n} \, x^{2n} \\ \frac{1}{x^{4}} \, \left( - F_{2} x^{2} + \frac{F_{2} x^{2}}{1 - L_{2} x^{2} + x^{4}} \right) &= \frac{a}{x^{2}} \, \frac{F_{2} \, x^{2}}{1 - L_{2} x^{2} + x^{4}} + \frac{b \, F_{2} \, x^{2}}{1 - L_{2} x^{2} + x^{4}} \\ \end{align} which becomes $F_{2} L_{2} x^{4} - F_{2} x^{6} = a F_{2} x^{4} + b F_{2} x^{6}$ and leads to $a = L_{2} = 3$ and $b = -1$. This can be verified in the following way: \begin{align} 3 F_{2n-2} - F_{2n-4} &= 3 F_{2n-2} - ( F_{2n-2} - F_{2n-3} ) \\ &= F_{2n-1} + F_{2n-2} \\ &= F_{2n} \end{align} which is the desired result.