1
$\begingroup$

Let $f_n$ denote the $nth$ Fibonacci number then what is the generating function for the sequence$f_0,0,f_2,0,f_4,0,...$ $$\text{Attempt}$$Its known that the sequence has following two properties.\begin{align} \smash[b]{\sum_{i=1}^n F_{2i-1}}&=F_1+F_3+F_5+\cdots+F_{2n-1}\\ &=F_{2n}\\ \end{align} $$\begin{align} \smash[b]{\sum_{i=1}^n F_{2i}}&=F_2+F_4+F_6+\cdots+F_{2n}\\ &=F_{2n+1}-1\\ \end{align}$$ I will intentionally not start from $0$. $$B(x)=F_2x^1+0+F_4x^2+..=\sum_{k=1}^{\infty}F_{2k}x^k \implies B(1)=\sum_{k=1}^{\infty}\sum_{i=1}^{k}F_{2i-1}$$.But i dont see how to proceed from here. Any help will be appreciated!

$\endgroup$

1 Answer 1

2
$\begingroup$

Hint. If $f$ is the generating function of any sequence $f_0,f_1,f_2,f_3,f_4\dots$ then $$\frac{f(x)+f(-x)}{2}=f_0+f_2x^2+f_4x^4+\dots.$$

$\endgroup$
1
  • $\begingroup$ oh! I am feeling so silly now! $\endgroup$ Commented Jun 6, 2020 at 17:54

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.