So basically I want to find the closed form of $G_n = \sum_{k = 1}^n \binom{n+k - 1}{2k-1}$.
After checking for $n = 1,2,3,4$ the values are $1, 3, 8, 21$ respectively. I claim that it is $F_{2n}$ where $F_0 = 0, F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$. My idea was to prove this using generating functions.
We have that $\binom{n+k-1}{2k-1}$ is the $n$th coefficient of $X^k \sum_{i \geq 0} \binom{i + 2k - 1}{i} X^i = \frac{X^k}{(1-X)^{2k}}$ so the $$\sum_{n \geq 0} G_n X^n = \sum_{k = 1}^n \frac{X^k}{(1-X)^{2k}}$$
Now we want to find what $F_0 + F_2X + F_4X^2 + ...$ is and we know that $F_0 + F_1X + ... = \frac{X}{1-X-X^2}$.
So \begin{align*} F_0 + F_2X^2 + F_4X^4 + ... & = \frac{1}{2} \left ( \frac{X}{1-X-X^2} + \frac{-X}{1 + X - X^2} \right ) \\ & = \frac{X^2}{(1-X^2)^2 - X^2} \end{align*} which means $$F_0 + F_2X + F_4X^2 + ... = \frac{X}{(1-X)^2 - X}.$$
So if suffices to show \begin{align*} \frac{X}{(1-X)^2 - X} & = \sum_{k = 1}^n \frac{X^k}{(1-X)^{2k}} \\ \frac{1}{(1-X)^2 - X} & = \sum_{k = 1}^n \frac{X^{k-1}}{(1-X)^{2k}} \\ \frac{(1-X)^{2n}}{(1-X)^2 - X} & = ((1-X)^2)^{n-1} + ((1-X)^2)^{n-2}X + ... + X^{n-1} \\ \frac{(1-X)^{2n}}{(1-X)^2 - X} & = \frac{(1-X)^{2n} - X^n}{(1-X)^2 - X} \end{align*} which is not true. I don't see where I went wrong with this.