Let $N_n$ - random variable with integer values and $\frac{N_n}{n} \xrightarrow[]{P} a$. Let $S_n = X_1 + \cdots + X_n$, where $X_i$ - iid with $EX_i=0$, $Var X_i = 1$. $N_n$ and $\{X_i\}$ are independent. Prove that $$\frac{S_{N_n}}{\sqrt{n}} \xrightarrow[]{d} U \sim \mathcal{N}(0,a).$$
I tried to repeat the last part of proof of CLT which is using characteristic function:
$$\psi_{\frac{X_1 +\cdots + X_{N_n}}{\sqrt n}} (t) = \psi_{\frac{X_1}{\sqrt n}} (t) \cdots \psi_{\frac{X_{N_n}}{\sqrt n}} (t) = \left(\psi_{\frac{X_1}{\sqrt n}} (t) \right)^{N_n} = \\ = \left( 1 - \frac{t^2}{2n} + O\left(\frac{1}{n}\right) \right)^{n \cdot\frac{N_n}{n}} \rightarrow \left(e^{\frac{t^2}{2}}\right)^a = e^{-\frac{at^2}{2}}.$$ Of course, the limit is not correct because $N_n$ - random. But this is kind of idea. And I have no ideas how to use this convergence in probability $\frac{N_n}{n} \xrightarrow[]{P} a$.