We have the following formula: \begin{equation} \begin{aligned} \left(N+d-1\right)v(N+d) = & \left(N-1\right)v(N) +\sum\limits_{i=N+1}^{N+d} \left(x_i - \frac{1}{d}\sum\limits_{j=N+1}^{N+d} x_{j} \right)^2 \\ &+\dfrac{d N}{(N+d)}\left(Y(N)-\frac{1}{d}\sum\limits_{j=N+1}^{N+d} x_{j}\right)^2 \end{aligned} \end{equation} The third term of this expression is independent of the data used in $v(N)$, and thus the covariance with respect to $v(N)$ is equal to zero. The fourth term of this expression is a quadratic that may be expanded in the following manner \begin{equation} \left(Y(N)-\frac{1}{d}\sum\limits_{j=N+1}^{N+d} x_{j}\right)^2 = Y^2(N) - 2\left(\frac{1}{d}\sum\limits_{j=N+1}^{N+d} x_{j}\right)Y(N) + \left(\frac{1}{d}\sum\limits_{j=N+1}^{N+d} x_{j}\right)^2. \end{equation} The third term of this quadratic is independent of the data used in $v(N)$, and thus the covariance with respect to $v(N)$ is equal to zero. Similarly, by independence, we may factor out the $\frac{1}{d}\sum\limits_{j=N+1}^{N+d} x_{j}$-summation when considering the covariance with respect to $v(N)$. As this summation is an unbiased estimator of the mean, its expectation is equal to $\mu$. Consequently, taking the covariance of the expression above with respect to $v(N)$ and applying bilinearity yields \begin{equation} \begin{aligned} \left(N+d-1\right){\mathrm{Cov}}[v(N+d),v(N)] = & \left(N-1\right){\mathrm{Var}}[v(N)]+\dfrac{d N}{(N+d)}{\mathrm{Cov}}[Y^2(N),v(N)] \\ &- \dfrac{2\mu d N}{(N+d)}{\mathrm{Cov}}[Y(N),v(N)]. \end{aligned} \end{equation} We may use the definition of the covariance, and the unbiased nature of the estimators $Y$ and $v$, to deduce that \begin{equation} {\mathrm{Cov}}[Y^2(N),v(N)] = \mathbb{E}[Y^2(N)v(N)] - \mathbb{E}[Y^2(N)]\sigma^2, \qquad {\mathrm{Cov}}[Y(N),v(N)] = \mathbb{E}[Y(N)v(N)] - \mu \sigma^2. \end{equation} Substituting these expressions into the above we have that \begin{equation} \begin{aligned} \left(N+d-1\right){\mathrm{Cov}}[v(N+d),v(N)] = & \left(N-1\right){\mathrm{Var}}[v(N)] +\dfrac{d N}{(N+d)}\mathbb{E}[(Y^2(N)-2\mu Y(N))v(N)] \\ &- \dfrac{d N}{(N+d)}\mathbb{E}[Y^2(N)-2\mu^2]\sigma^2. \end{aligned} \end{equation} We may further simplify these expressions using linearity and the unbiased nature of the estimators: \begin{equation} \begin{aligned} \mathbb{E}[(Y^2(N)-2\mu Y(N))v(N)] &= \mathbb{E}[(Y(N)-\mu)^2 v(N)] - \mu^2 \sigma^2, \\ \mathbb{E}[Y^2(N)-2\mu^2]\sigma^2 &= \mathbb{E}[Y^2(N)-2\mu Y(N)]\sigma^2 = \mathbb{E}[(Y(N)-\mu)^2]\sigma^2 - \mu^2 \sigma^2. \end{aligned} \end{equation} Substituting these expressions into our formula for the covariance implies that \begin{equation} \begin{aligned} \left(N+d-1\right){\mathrm{Cov}}[v(N+d),v(N)] = & \left(N-1\right){\mathrm{Var}}[v(N)] +\dfrac{d N}{(N+d)}\mathbb{E}[(Y(N)-\mu)^2 (v(N)-\sigma^2)]. \end{aligned} \end{equation} To evaluate this expression, we decompose both estimators to their summations with respect to $x_i$. The variance estimator may be expressed in the following manner: \begin{equation} \begin{split} (N-1)v(N) & = \sum\limits_{i=1}^N ((x_i-\mu)-(Y(N)-\mu))^2= \sum\limits_{i=1}^N (x_i-\mu)^2- N(Y(N)-\mu)^2, \\ (Y(N)-\mu)^2 v(N) &=\dfrac{1}{N-1} (Y(N)-\mu)^2\sum\limits_{i=1}^N (x_i-\mu)^2- \dfrac{N}{N-1}(Y(N)-\mu)^4. \end{split} \end{equation} Similarly, the expectation estimator satisfies \begin{equation} \begin{split} (Y(N)-\mu)^2 =& \dfrac{1}{N^2}\sum\limits_{i=1}^N (x_i-\mu)^2 + \dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{j<i} (x_i-\mu)(x_j-\mu), \\ (Y(N)-\mu)^2\sum\limits_{k=1}^N (x_k-\mu)^2 =& \dfrac{1}{N^2}\left(\sum\limits_{i=1}^N (x_i-\mu)^2\right)^2 + \dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{j<i} \sum\limits_{k=1}^N (x_i-\mu)(x_j-\mu)(x_k-\mu)^2, \\ (Y(N)-\mu)^2\sum\limits_{k=1}^N (x_k-\mu)^2 =& \dfrac{1}{N^2}\sum\limits_{i=1}^N (x_i-\mu)^4 +\dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{k<i} (x_i-\mu)^2(x_k-\mu)^2 \\ &+ \dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{j<i} (x_i-\mu)^3(x_j-\mu)+ \dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{j<i} (x_i-\mu)(x_j-\mu)^3 \\ &+ \dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{j<i}\sum\limits_{\substack{ k\neq i \\ k\neq j}} (x_i-\mu)(x_j-\mu)(x_k-\mu)^2. \end{split} \end{equation} As a consequence of independence, linearity of expectation, and $\mathbb{E}[x-\mu]=0$, we have that \begin{equation} \begin{split} \mathbb{E}\left[(Y(N)-\mu)^2\sum\limits_{k=1}^N (x_k-\mu)^2\right] =& \dfrac{1}{N^2}\sum\limits_{i=1}^N \mathbb{E}[(x_i-\mu)^4] +\dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{k<i} \mathbb{E}[(x_i-\mu)^2]\mathbb{E}[(x_k-\mu)^2] , \\ \mathbb{E}\left[(Y(N)-\mu)^2\sum\limits_{k=1}^N (x_k-\mu)^2\right] =& \dfrac{\mu_4}{N}+\dfrac{(N-1)}{N}\sigma^4. \end{split} \end{equation} Additionally, the expectation estimator satisfies \begin{equation} \begin{split} N^4(Y(N)-\mu)^4 =& \sum\limits_{i=1}^N (x_i-\mu)^4 + 4\sum\limits_{i\neq j} (x_i-\mu)^3(x_j-\mu) + 6 \sum\limits_{i < j} (x_i-\mu)^2(x_j-\mu)^2 \\ & + 12 \sum\limits_{\substack{i,j,k \\ {\mathrm{distinct}}}} (x_i-\mu)^2(x_j-\mu)(x_k-\mu)+ 24 \sum\limits_{\substack{i,j,k,l \\ {\mathrm{distinct}}}} (x_i-\mu)(x_j-\mu)(x_k-\mu)(x_l-\mu). \end{split} \end{equation} Thus, using the same logic as before, we have that \begin{equation} \begin{split} \mathbb{E}[(Y(N)-\mu)^4] =& \dfrac{\mu_4}{N^3}+ \dfrac{3(N-1)}{N^3} \sigma^4. \end{split} \end{equation} Consequently we have that \begin{equation} \begin{split} \mathbb{E}[(Y(N)-\mu)^2 v(N)] =& \dfrac{1}{N-1} \left(\dfrac{\mu_4}{N}+\dfrac{(N-1)}{N}\sigma^4\right)- \dfrac{N}{N-1}\left(\dfrac{\mu_4}{N^3}+ \dfrac{3(N-1)}{N^3} \sigma^4\right) \\ =& \left(\dfrac{\mu_4}{N^2}+\dfrac{N-3}{N^2}\sigma^4\right). \end{split} \end{equation} To complete this expression we recall the expansion for $(Y(N)-\mu)^2$ and use the same logic as the previous set of equations to deduce that \begin{equation} \begin{split} \mathbb{E}[(Y(N)-\mu)^2 \sigma^2] =& \dfrac{1}{N^2}\sum\limits_{i=1}^N \mathbb{E}[(x_i-\mu)^2]\sigma^2 + \dfrac{2}{N^2}\sum\limits_{i=1}^N \sum\limits_{j<i} \mathbb{E}[(x_i-\mu)]\mathbb{E}[(x_j-\mu)]\sigma^2 \\ =& \dfrac{1}{N}\sigma^4. \end{split} \end{equation} Hence we have that \begin{equation} \begin{split} \mathbb{E}[(Y(N)-\mu)^2 (v(N)-\sigma^2)] =& \dfrac{1}{N^2}\left(\mu_4-3\sigma^4\right), \\ \left(N+d-1\right){\mathrm{Cov}}[v(N+d),v(N)] = & \left(N-1\right){\mathrm{Var}}[v(N)] +\dfrac{d}{N(N+d)}\left(\mu_4-3\sigma^4\right). \end{split} \end{equation} Using this result completes the proof of the expression above.
Taking the covariance of the above expression with respect to $v(N)$, we may use bilinearity and independence to deduce \begin{equation} \begin{aligned} \left(N+d-1\right)\mathrm{Cov}[v(N+d),v(N)] = \left(N-1\right)\mathrm{Var}[v(N)] +\dfrac{d N}{(N+d)}\mathrm{Cov}\left(\left(Y(N)-\frac{1}{d}\sum\limits_{j=N+1}^{N+d} x_{j}\right)^2,v(N)\right). \end{aligned} \end{equation} Expanding the quadratic and again using independence yields \begin{equation} \begin{aligned} \left(N+d-1\right)\mathrm{Cov}[v(N+d),v(N)] = \left(N-1\right)\mathrm{Var}[v(N)] \\+\dfrac{d N}{(N+d)}\mathrm{Cov}\left(Y^2(N),v(N)\right)-\dfrac{2d N}{(N+d)}\mu \mathrm{Cov}\left(Y(N),v(N)\right). \end{aligned} \end{equation} Isolating both covariance terms we have \begin{equation} \begin{aligned} \mathrm{Cov}\left(Y^2(N),v(N)\right) =& \mathbb{E}\left[Y^2(N)v(N)\right] - \mathbb{E}\left[Y^2(N)\right]\mathbb{E}\left[v(N)\right] \\ =& \mathbb{E}\left[Y^2(N)v(N)\right] - \left(\frac{\sigma^2}{N}+\mu^2\right)\sigma^2, \\ \mathrm{Cov}\left(Y(N),v(N)\right) =& \mathbb{E}\left[Y(N)v(N)\right] - \mathbb{E}\left[Y(N)\right]\mathbb{E}\left[v(N)\right] \\ =& \mathbb{E}\left[Y(N)v(N)\right] - \mu \sigma^2. \end{aligned} \end{equation} Substituting these expressions into the covariance formula, we obtain \begin{equation} \begin{aligned} \left(N+d-1\right)\mathrm{Cov}[v(N+d),v(N)] = \left(N-1\right)\mathrm{Var}}[v(N)] \\+\dfrac{d N}{(N+d)}\left(\mathbb{E}[Y^2(N)v(N)]-2\mu \mathbb{E}[Y(N)v(N)] - \frac{\sigma^4}{N}+\mu^2 \sigma^2\right). \end{aligned} \end{equation} To simplify the expression further, \begin{equation} \mathbb{E}[Y^2(N)v(N)]-2\mu \mathbb{E}[Y(N)v(N)] = \mathbb{E}[(Y(N)-\mu)^2v(N)] - \mu^2\sigma^2. \end{equation} Therefore, \begin{equation} \begin{aligned} \left(N+d-1\right)\mathrm{Cov}[v(N+d),v(N)] = \left(N-1\right)\mathrm{Var}}[v(N)] +\dfrac{d N}{(N+d)}\left(\mathbb{E}[(Y(N)-\mu)^2v(N)] - \frac{\sigma^4}{N}\right). \end{aligned} \end{equation} The variance estimator decomposition allows us to express $v(N)$ as \begin{equation} (N-1)v(N) = \sum\limits_{i=1}^N (x_i-Y(N))^2 = \sum\limits_{i=1}^N ((x_i-\mu)-(Y(N)-\mu))^2. \end{equation} Expanding the square gives \begin{equation} \begin{split} \sum\limits_{i=1}^N ((x_i-\mu)-(Y(N)-\mu))^2 &= \sum\limits_{i=1}^N (x_i-\mu)^2 - 2\sum\limits_{i=1}^N (x_i-\mu)(Y(N)-\mu) + \sum\limits_{i=1}^N (Y(N)-\mu)^2 \\ &= \sum\limits_{i=1}^N (x_i-\mu)^2 - 2 N (Y(N)-\mu)^2 + N (Y(N)-\mu)^2 \\ &= \sum\limits_{i=1}^N (x_i-\mu)^2 - N (Y(N)-\mu)^2. \end{split} \end{equation} Hence, the sample variance can be rewritten as \begin{equation} v(N) = \frac{1}{N-1} \left( \sum\limits_{i=1}^N (x_i-\mu)^2 - N (Y(N)-\mu)^2 \right). \end{equation} Now, taking the expectation of $(Y(N)-\mu)^2 v(N)$ using this decomposition yields \begin{equation} \begin{split} \mathbb{E}[(Y(N)-\mu)^2 v(N)] &= \frac{1}{N-1} \left( \mathbb{E}[(Y(N)-\mu)^2 \sum\limits_{i=1}^N (x_i-\mu)^2] - N \mathbb{E}[(Y(N)-\mu)^4] \right) \\ &= \frac{1}{N-1} \left( N \mathbb{E}[(Y(N)-\mu)^2 (x_1-\mu)^2] - N \mathbb{E}[(Y(N)-\mu)^4] \right) \\ &= \frac{N}{N-1} \left( \mathbb{E}[(Y(N)-\mu)^2 (x_1-\mu)^2] - \mathbb{E}[(Y(N)-\mu)^4] \right). \end{split} \end{equation} Because of the i.i.d. assumption, \begin{equation} \mathbb{E}[(Y(N)-\mu)^2 (x_1-\mu)^2] = \frac{1}{N^2} \mathbb{E}[(x_1-\mu)^4] + \frac{2}{N^2} \sum_{j>1} \mathbb{E}[(x_1-\mu)^2 (x_j-\mu)^2]. \end{equation} Noting that $\mathbb{E}[(x_1-\mu)^2 (x_j-\mu)^2] = \sigma^4$ for $j \neq 1$, and $\mathbb{E}[(x_1-\mu)^4] = \mu_4$, we have \begin{equation} \mathbb{E}[(Y(N)-\mu)^2 (x_1-\mu)^2] = \frac{\mu_4}{N^2} + \frac{N-1}{N^2} \sigma^4. \end{equation} Substituting back, we obtain \begin{equation} \mathbb{E}[(Y(N)-\mu)^2 v(N)] = \frac{N}{N-1} \left( \frac{\mu_4}{N^2} + \frac{N-1}{N^2} \sigma^4 - \frac{\mu_4}{N^3} - \frac{3(N-1)}{N^3} \sigma^4 \right) = \frac{\mu_4}{N^2} + \frac{N-3}{N^2} \sigma^4. \end{equation} Then the covariance between the two variance estimators is given by \begin{equation} \begin{split} {\mathrm{Cov}}[v(N+d),v(N)] = & \frac{N-1}{N+d-1}\frac{1}{N}\left(\mu_4 - \dfrac{N-3}{N-1}\sigma^4\right) +\dfrac{d}{N(N+d)(N+d-1)}\left(\mu_4-3\sigma^4\right). \end{split} \end{equation}