View source on GitHub |
Initializer that generates tensors initialized to 0.
tf.compat.v1.zeros_initializer( dtype=tf.dtypes.float32 ) Migrate to TF2
tf.compat.v1.zeros_initializer is compatible with eager execution and tf.function.
To migrate to TF2, please use tf.zeros_initializer instead. The dtype argument in tf.compat.v1.zerosinitializer.init_() does not exist in tf.zerosinitializer.init_(). However, you can specify the dtype in __call__() in both cases.
Structural Mapping to TF2
Before:
initializer = tf.compat.v1.zeros_initializer(dtype=tf.float32) variable = tf.Variable(initializer(shape=[3, 3])) After:
initializer = tf.zeros_initializer() variable = tf.Variable(initializer(shape=[3, 3], dtype=tf.float32)) How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
|---|---|---|
dtype | dtype | In __call__() method |
partition_info | - | (__call__ arg in TF1) Not supported |
Before & After Usage Example
Before:
initializer = tf.compat.v1.zeros_initializer(dtype=tf.float32)tf.Variable(initializer(shape=[3])).numpy()array([0., 0., 0.], dtype=float32)tf.Variable(initializer(shape=[3, 3])).numpy()array([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]], dtype=float32)initializer = tf.compat.v1.zeros_initializer()tf.Variable(initializer(shape=[3], dtype=tf.float32)).numpy()array([0., 0., 0.], dtype=float32)tf.Variable(initializer(shape=[3, 3], dtype=tf.float32)).numpy()array([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]], dtype=float32)
After:
initializer = tf.zeros_initializer()tf.Variable(initializer(shape=[3], dtype=tf.float32)).numpy()array([0., 0., 0.], dtype=float32)tf.Variable(initializer(shape=[3, 3], dtype=tf.float32)).numpy()array([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]], dtype=float32)
Description
Used in the notebooks
| Used in the guide |
|---|
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) | Args | |
|---|---|
config | A Python dictionary. It will typically be the output of get_config. |
| Returns | |
|---|---|
| An Initializer instance. |
get_config
get_config() Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. |
__call__
__call__( shape, dtype=None, partition_info=None ) Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. If not provided use the initializer dtype. |
partition_info | Optional information about the possible partitioning of a tensor. |
View source on GitHub