View source on GitHub |
Cell class for SimpleRNN.
Inherits From: Layer, Operation
tf.keras.layers.SimpleRNNCell( units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, **kwargs ) This class processes one step within the whole time sequence input, whereas keras.layer.SimpleRNN processes the whole sequence.
Example:
inputs = np.random.random([32, 10, 8]).astype(np.float32) rnn = keras.layers.RNN(keras.layers.SimpleRNNCell(4)) output = rnn(inputs) # The output has shape `(32, 4)`. rnn = keras.layers.RNN( keras.layers.SimpleRNNCell(4), return_sequences=True, return_state=True ) # whole_sequence_output has shape `(32, 10, 4)`. # final_state has shape `(32, 4)`. whole_sequence_output, final_state = rnn(inputs) Methods
from_config
@classmethodfrom_config( config )
Creates a layer from its config.
This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).
| Args | |
|---|---|
config | A Python dictionary, typically the output of get_config. |
| Returns | |
|---|---|
| A layer instance. |
get_dropout_mask
get_dropout_mask( step_input ) get_initial_state
get_initial_state( batch_size=None ) get_recurrent_dropout_mask
get_recurrent_dropout_mask( step_input ) reset_dropout_mask
reset_dropout_mask() Reset the cached dropout mask if any.
The RNN layer invokes this in the call() method so that the cached mask is cleared after calling cell.call(). The mask should be cached across all timestep within the same batch, but shouldn't be cached between batches.
reset_recurrent_dropout_mask
reset_recurrent_dropout_mask() symbolic_call
symbolic_call( *args, **kwargs )
View source on GitHub