Stacks a list of rank-R tensors into one rank-(R+1) RaggedTensor.
tf.ragged.stack( values: typing.List[ragged_tensor.RaggedOrDense], axis=0, name=None )
Given a list of tensors or ragged tensors with the same rank R (R >= axis), returns a rank-R+1 RaggedTensor result such that result[i0...iaxis] is [value[i0...iaxis] for value in values].
Examples:
# Stacking two ragged tensors. t1 = tf.ragged.constant([[1, 2], [3, 4, 5]]) t2 = tf.ragged.constant([[6], [7, 8, 9]]) tf.ragged.stack([t1, t2], axis=0) <tf.RaggedTensor [[[1, 2], [3, 4, 5]], [[6], [7, 8, 9]]]> tf.ragged.stack([t1, t2], axis=1) <tf.RaggedTensor [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]]>
# Stacking two dense tensors with different sizes. t3 = tf.constant([[1, 2, 3], [4, 5, 6]]) t4 = tf.constant([[5], [6], [7]]) tf.ragged.stack([t3, t4], axis=0) <tf.RaggedTensor [[[1, 2, 3], [4, 5, 6]], [[5], [6], [7]]]>
Args |
values | A list of tf.Tensor or tf.RaggedTensor. May not be empty. All values must have the same rank and the same dtype; but unlike tf.stack, they can have arbitrary dimension sizes. |
axis | A python integer, indicating the dimension along which to stack. (Note: Unlike tf.stack, the axis parameter must be statically known.) Negative values are supported only if the rank of at least one values value is statically known. |
name | A name prefix for the returned tensor (optional). |
Returns |
A RaggedTensor with rank R+1 (if R>0). If R==0, then the result will be returned as a 1D Tensor, since RaggedTensor can only be used when rank>1. result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values])). |
Raises |
ValueError | If values is empty, if axis is out of bounds or if the input tensors have different ranks. |